
D-R124 642 ALGORITHMS FOR DIFFERENTIAL GAMES WI1TH BOUNDED CONTROL 1/2
AND STATES(U) CALIFORNIA UNIV LOS ANGELES SCHOOL OF
ENGINEERING AND APPLIED SCIENCE A CHONPAISAL MAR 82

UNCLASSIFIED DASG68-88-C-80S? F/G 12/1 N



12.51

11111tntI'.2

- Is

1111 2 A 11.6

*MICROCOPY RESOLUTION TEST CHART
-NATION~AL BUREAU OF STANDOARDS -1963-A



_________-- -REAL) INSTRU'CTIONSF EGR REPORT DOCUMENTATION PAGE 3FRCOPEIGOM
REP ,RT NUMBE I. GOVI ACCESSION NO. 3 RECIPILNT'S CATALOG NUMBER

None ~_________
TITLE (end Subtitle) S. TYPE OF REPORT P PERIOD COVERED

ALGORITHMS FOR DIFFERENTIAL GAMES WITH Final, 11/29/79-11/28/81

BOUNDED CONTROL AND STATES 6. PERFORMING ORO. REPORT NUMBERNone":-

AUTHOR(@) 8. CONTRACT OR GRANT NUMBER(e)DASG-60-80-C-0007 :"

Aran Chompaisal

UCLA, School of Engineering and Applied PG E PCncS

PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. RROEECT. TASKpit RFFIMINORGANIATIONARE A WORK UNIT NUMBER
S

r '

UCLA, School of Engineering and Applied Science None
Los Angeles, California 90024

l CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

SAdvanced Technology Center March. 1982
• U.S. Army Ballistic Missile Defense Command 1. NUMBER OF PAGES

151
Huntsville, Alabama
MONITORING AGENCY NAME & ADDRESS(il dIllerent from Conteolling Office) IS. SECURITY CLASS. (of this repo).'

Unclassified

Same as No. 11 ,Sa. DECLASSIFICATION, DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report.

DISTRIBU77ON TATEMENTA
~~iat:Th-tiAppove fixL ... m I A L.>. public 7das

IDiatributon Unlimited'

17. DISTRIBUTION STATEMENT (of the Abstract enr,d in Block 20. it dillerent i,oin Report)

None d a e"

10 SUPPLEMENTARY NOTES alow A a --- I o'

lll ELIECTE I  =None
None FEB 2 2 1983 ,:

19 KEY *ORO)S (Continue on reverse side It noceomey andtdorly by block number)

20. ABSTRACT (Continue on Favors* side if necesese and identit, by block number)

See attached

C)
.-

C* DD , 7 1473 EDITION OF I NOV11 IS OBSOLETE
0102 LF 014 -601 _'83 02 0 CuR$I 48 AIFCATION OF THIS PAGE (111 en De'e SntereE'

83 .2 0



4.7

SECURITY CLASSIFICATION OF THIS PAGE(W"en Det. Entered)

ABSTRACT

3 Pursuit and Evasion problems are probably the most natural

application of differential game theory and have been treated by many

authors as such. Very few problems of this class can be solved

analytically. Fast and efficient numerical algorithm is needed to

solve for an optimal or near optimal solution of a realistic pursuit

and evasion differential game.

Some headways have been made in the development of numerical

algorithm for this purpose. Most researchers, however, worked under

an assumption that a saddle point exists for their differential game.

Here, it is shown via two examples and a nonlinear stochastic

differential game that such is not the case.

A first-order algorithm for computing an optimal control for each

player, subject to control and/or state constraints, is developed without

the assumption of saddle point existence. It is shown that a linear

quadratic differential game with control and/or state constraints

generally cannot be solved analytically. One such problem is developed

and solved by the above algorithm. A new rationalization is offered

in formulating a missile anti-missile problem as a nonlinear stochastic
differential game. The algorithm developed here together with a

convergence control method introduced by Jarmark is used to solve

the missile anti-missile problem with fast computation time.

Accession For

NTIS CRA&I
DTIC TAB

Just iY f .. " . ,•.Ii 0, .....-

Availability Codes

:Avail and/or

Dist Special



ALGORITHMS FOR DIFFERENTIAL GAMES
WITH BOUNDED CONTROL AND STATES

BY

Aran Chompaisal

-4.

March, 1982

Submitted under contract

DASG-60-80-C-0007

Advances In Technology Development

for Exoatmospheric Intercept Systems

-" U.S. Army Ballistic Missile

Defense Coumand

Advanced Technology Center

Huntsville, Alabama

School of Engineering and Applied Science

University of California

Los Angeles, California

• . , , • o " 
•

• ° -
°

, • - .. . . .- . - .. -I . • ° - . - . - , • - . • - o . . .



ABSTRACT

Pursuit and Evasion problems are probably the most natural

application of differential game theory and have been treated by many

authors as such. Very fev problems of this class can be solved

analytically. Fast and efficient numerical algorithm is needed to

solve for an optimal or near optimal solution of a realistic pursuit

and evasion differential game.

Some headways have been made in the development of numerical

algorithm for this purpose. Host researchers, however, worked under

an assumption that a saddle point exists for their differential game.

Here, it is shown via two examples and a nonlinear stochastic

differential game that such is not the case.

A first-order algorithm for computing an optimal control for each

player, subject to control and/or state constraints, is developed without

the assumption of saddle point existence. It is shown that a linear

quadratic differential game with control and/or state constraints

generally cannot be solved analytically. One such problem is developed

and solved by the above algorithm. A new rationalization is offered

in formulating a missile anti-missile problem as a nonlinear stochastic

differential game. The algorithm developed here together with a

convergence control method introduced by Jarmark is used to solve

the missile anti-missile problem with fast computation time.



TABLE OF CONTENTS

Abstract

CHAPTER 1. INTRODUCTION, LITERATURE SURVEY,

AND SCOPE OF DISSERTATION 1

1.1 Literature Survey ......... . . ... . .. . ........ 2

1.2 Differential GameStructure ................ 9

1.3 Differential Game Formulation............. 14

1.4 Objective and Scope of Dissertation... 17

CHAPTER 2. DEVELOPMENT OF NUMERICAL ALGORITHM. .... 19

2.1 Differential Game Solution .................. 20

2.2 The State of the Art on Numerical

2.3 Differential Dynamic Programming
with State and Control Constraints ......... 35

2.3.1 Derivation of -DDP with State
-and Control Constraints .............. 35

2.3.2 DDP Computational Procedure.......... 43

2.3.3 Step-Size Adjustment .................. 44

2.4 Gradient Projection for Outer Optimization.. 47

2.4.1 Gradient Calculation ................. 47

2.4.2 Gradient Projection.................. 50



Page

2.5 Algorithm Steps ...... .. .. .. . ... .. . .. . ....... 53

CHAPTER 3. LINEAR QUADRATIC INTERCEPT PROBLEM.... 57

3.1 Formulation of Linear-Quadratic
Differential Game. .. .. .. .. .. .. .. .. .. .. .. . .... 57

3.2 Analytical Closed-Loop Solution ............. 59

3.2.1 With Assumption that Saddle
Point Exist ......... .. .. .. .. . ....... 59

3.2.2 Without Assumption that Saddle
Point Exist ............... .. .. .. . . . .. 61

3.2.3 Summary of Analytical Solutions
and Discussion. . .. .. .. .. .. ........... 67

3.3 An Illustrative Example Without Control

3.4 Linear Quadratic Problem with Hard Limit
on Controls .. .. .. . .. .. .. .. .. .. ............. 75

* .3.5 Numerical Solutions ......................... 77

3.5.1 Algorithm Mechanization .............. 78

3.5.2 Effects of Parameter Variations ...... 84

3.5.3 Discussion on the Algorithms ......... 87

CHAPTER 4. A NONLINEAR STOCHASTIC PURSUIT

EVASION PROBLEM. ... . ... .. .. .. . ... . .. ... 94

4.1 Description of the Problem .................. 95

4.2 Formulation of the Problem ................. 99

4.2.1 Dynamics of the Problem ............... 99

4.2.2 Cost Function of the Problem ......... 106

4.2.3 Constraints....... .. .. .. . ... .. . .. .. ... 109

4.3 Convergence Control Technique ............... 110



Page

4.4 Computational Aspects of the Prob le.... 114

4.4.1 Parameter Value Assiget men..... 115

4.4.2 Maxmin Solution . .. .. .. . .... .. . ... ..... 117

4.4.3 Miruuax Solution....... .. . .. . ... . .. . . 132

4.4.4 Net Solution. ... . ... .. .. .. .. . .. .. ..... 142

4.5 Discussion of the Prom le...............145

CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS ....... 149

5.2 Recommendations for Future Research ......... -150



CHAPTER 1

INTROD2UCTION, LITERATURE SURVEY, AND

SCOPE OF DISSERTATION

Pursuit and Evasion problems have been treated by many

authors as differential games. Analytically, only linear

quadratic differential games have been solved. Functional

Analysis has served as a good tidy approach to gain valuable

insights to some aspects of differential games theory. How-

ever, only the simplest mathematical problems which represent

very small or no resemblance of physical realization of real

life has been solved by this approach.

Presently, the hope to solve for an optimal or near

optimal solution of a realistic pursuit and evasion dif-

ferential game does seem to lie on efficient numerical

algorithms. To make this dissertation as self contained

as possible, we shall start of f with a brief background and

history of game theory through literature survey of the

game theory in general, narrow down to the work done on

numerical soltions which will be included in the next

* chapter. A general structure of differential game will

then be formulated. The formulation of mathematical model

of differential game will be discussed. Lastly, we shall

conclude this chapter with the statements and the signi-

ficance of what we hope to accomplish in this dissertation.



1.1 Literature Survey

The problem of pursuit as a mathematical model was

originated in the fifteenth century by Leonardo da Vinci

according to Davis(l). In 1732 Bougner proposed and solved

for an optimal curve by which a vessel moves in pursuing

another which flees along a straight-line, supposing that

the velocities of the two vessels are always in the same

4l.- ratio. More recently, Hathaway, Archibald, and Manning,,3) ' 4

in 1921 worked on a more difficult problem in which the

evader moves on a circle.

During the same year (1921) Emile Borel attempted to

abstract strategic situations of game theory into a mathe-

atical theory of strategy. After John von Neumann proved

the Minimax Theorem in 1928, the theory was firmly esta-

blished. However, the academic interests in the game

theory did not catch on until the publication in ]944 of

the impressive work by John von' Neumann and Oskar Morgen-

stern, Theory of Games and Economic Behavior. The theme

of this book pointed out a new approach to the general

problem of competetive behavior specifically in economics

through a study of games of strategy. It was soon realized

that the applications of the theory are not limited only to

economics but also could be applied to the-military, poli-

tics, and other civil organizations as well.

Since then a great amount of research on game theory

was published, a bibliography compiled in 1959!13) contains
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more than one thousand entries. It is therefore impossible

to mention all these reports. Only a brief overview of the

section of the field that is closely related to this dis-

sertation will be presented here.

It is interesting to note that the games of pursuit

mentioned so far in the preceeding paragraphs are one-sided

optimal control problems where only the pursuers have free-

dom of movement while the evaders move on pre determined

trajectories. A new dimension in which both players have

the freedom to choose their motions was added by Isaacs

when he began the development of the theory of differential

games at the Rand Corporation(61. Isaacs compiled all his

results in a book (7 ) published in 1965. Ho(8) provided the

control engineers with the review of Isaacs' book in a more

familiar terminology. It was here that the elements of game

theory was married to the theory of optimal control.

Briefly, Isaacs is concerned with problems with payoff

function.

J(x_6,u(t),v(t)) = F(x(T),T) + fT L(x(t),u(t),v(t);t)dt

and dynamics

_ = f(x,u,v;t) x(0) = Ko (1.2)

where T is the final time or the time when the state tra-

jectory meets a given terminal manifold. He assumes that a

saddle point exist, an issumption which is not always true.

The precise me.. . ' a saddle point will be given in the

3



next chapter when we discuss the solution of Differential

Games. At the saddle point, the payoff function is called

the value of the game and is designated by J*(x,t). Isaacs

uses what he called the Tenet of Transition, a game theory

equivalent of Bellman's Principle of Optimality which he

apparently found independently in fact may have predated

it to show that the value function must satisfy his Main

Equation One, or ME
1

**T
-)J + min max [J .f(x,u,v;t) + L(x,u,v;t)] = 0 (1.3)
at u v x

In principle, ME can be used to solvei for u = u (x,J ;t)
1x

and v= v (x'Jx ;t). u and v are then substitued back into

ME to give the Main Equation Two, or ME2,

bJ + JX .f(x,u*,v*;t) + L(x,u ,v ;t) = 0 (1.4)
bt

This is a Hamilton-Jacobi type equation and is often re-

ferred to as a Hamilton-Jacobi-Bellman equation or a pre-

Hamiltonian equation which is somewhat of an injustice to

Isaacs. These equations will be used in our development of

a numerical algorithm in the next chapter.

Isaacs also contributes towards the sufficiency part

of the solution of the game through his so called Verifica-

tion Theorem. In essence, he states that if J (x,t) is a

unique continuous function satisfying the main equations

4



and the boundary condition J*(x(T),T) = F(x(T),T), then J*

is the value of the game and any u and v which satisfy

ME2 and caused the desired end points to be reached are

optimal. He proves this theory as the limit of a convergent

series of discrete approximations to the differential game.

(15)
Gadzhiev worked out necessary and sufficient con-

ditions for the existence of a pure strategy solution for

a problem with quadratic cost function and linear dynamic

systems. He stated also that a pure a strategy solution

for general differential game might not exist. In exploring

the application of the celebrated Minimax Principle, he met

only limited success because of the difficulty indefining a

probability measure for the controls available for play

which are time functions with infinite variability in

magnitude.

The most rigorous treatment to date contain in the work

Frid (n14 ) (10)of Freidman and Berkovitz I . Friedman in his book

published in 1971 uses Functional Analysis approach and went

through a mathematical maze of complications to obtain

essentially the same results as Isaacs. Berkovitz extended

results of the classical calculus of variations to zero-sum-

two-person differential games. His main results are: under

same fairly restrictive conditions with the Hamiltonian-like

function

4T
H(x,u,v,p) = L(x,U,v) + RT.f(x,u,v) (1.5)

5



the optimal control u* and v satisfy the following equations

S= H (x,uv,,)

= - Hx(x,u,v,) (1.6)

T T
Hu + gl "/ - = 0 v + 2u = 0

4 0 0.g11 = "00 Azig2i= 0

where g, and g2 are contraint functions on u and v respect-

ively,,/ and Ac, are associated Lagrange multipliers. He

also establishes sufficiency conditions using field concepts.

All these results applies under the assumption of existence

of a saddle point, again we may emphasize, an assumption

that is not always true.

As mentioned before in the opening statement, analyti-

cal results have indeed been rare except for the problem

with linear dynamics and quadratic cost. Athans(16 )presents

a review of recent works on differential games. Ho, Bryson

and Baron (1 7)model and solve a persuit-evasion problem as a

linear quadratic game, deriving conditions for existence of

solution. The meagerness in analytical results according

(8)to Ho is a direct consequence of the complications and

the complexities introduced into the optimal control problem

by the "other" controller.

6



McFarland(1 8) stated that most authors elect to treat

each player's control with no constraint using integral

penalities in the cost function to preclude any solution

with infinite magnitude. Published results have indeed

been rare for differential games with bounded control. Pro-

gress were made by Meschler (19 ) and Mier (20) on determinis-

tic problems of simple construction permitting analytical

treatment. Mier suggested that under close examination

generalization cannot be made. Other authors have made some

headways in this respect using numerical analysis. These

will be mentioned in the next chapter.

Another interesting approach to differential games is

the so called geometric approach. Some of the more signi-

ficant contributions in this respect are the work of Blag-

uiere, Gerard, and Leitman.21) ,(22),(23) in an augmented
(24)

state space. Karlin and Shapley. also used geometric

approach to provoke a rigorous investigation into the

geometry of moment spaces. The more recent works an geome-
(25)

tric approach to game theory are those of Westphal - and

Westphal and Stubberud (26 ) where they synthesize mixed

strategies and find game values for both sclar and vector

(27)
controls. Herrelko later extended these results to

cover the case with information time lag.

Although many questions still remained unanswered for

two-person zero-sum dynamic games with perfect information

and pure strategies, many researchers have wandered into

7



the area of other games. One reason for this is because

the early works were not applicable to many real-world

problems which are often n-person, non-zero sum and

stoachastic. Each of these areas is a challenge in itself

and most of the efforts to date have been rightly concen-

trated on each area individually.

Analytical success with the linear-quadratic problem

has induced many authors to explore stochastic games. Most

of the works in this area have been on two person-zero sum

linear-quadratic games with noisy transitions of dynamics,

random initial conditions, or moisy observations. According

(27)
to Bryson and Ho the main effort has been to relate

solutions of these problems to the "certainty-equivalence"

principle of stochastic optimal control theory. This, how-

ever, contain a logical fallacy in the treatment either

implicitly or explicitly of one player's control in his

opponent's estimator. Some of the contributors in the area

of stochastic differential games-are Ho, Speyer, Behn and

Ho, Rhodes and Luenberger,-Willan, Mons, Bley, etc.

To conclude this very brief overview of the historical

aspects of differential games, it might be worthwhile to

mention that successful researchers have shown respect for

this quite new field, and realize that the complications

involved is far more than an extension of optimal control.

Progress is made in careful steps and examples are kept

simple so that the new concepts being uncovered can be made

clear.

8



1.2 Differential Game Structure

In this section, an informal presentation of a very

general type of differential game, where there are any

number of players with different cost criteria and different

information sets will be given. With this structure, some

general classifications of differential game will be made.

Figure 1 illustrates basic structures of a general differen-

tial game. The interval of play is assumed to be [o,T1

where T may be a fixed final time or the time when the

state trajectory first reach a given terminal manifold.

At each instantanous time t in the interval [o,T],

each player from the total number of N players chooses a

vector of control inputs, ui, to optimize his cost criteria:

JiU,...,u N;t) Fi(x(T),T) + T Li(x,ul,...,uN;t)dt (1.7)

i = 1,2 ..... , N

These controls serves as input vectors to a common dynamic

system(shared by all players) described by a nonlinear vector

differential equation:

S=f(x,u1 , ..... ,uN, t,w(t))
+N

x(0) - x1.8)
40

Where w(t) is a vector input of random noise usually

9
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Figure 1. Structure of a general differential game
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Gaussian.

Generally some contraints ui E Ui where

U. = [u.: g(ul,...,. t) 0] (1.9)

or a set of vector contraint equations is also imposed on

the choice of control vectors ui's.

At each particular time t, each player also has a set

of measurements or information sets available to aid his

decision in choosing the control vector These information

sets are accumulated by each player during the interval

[O,t] in the form

Y = h (t,x('r) ,vi ('?)) for all r E [O,t] (1.10)

where u i(i) is the noise vector input to each of the player

measurement system.

To date, most differential games are formulated in two

special cases as follow:

(1) h (t, x(r),vi( t = x(V() for 04?1< t
1 1

where we have a deterministic system or perfect meas-

urements of the state vector if all information is

used, the solution is in closed-loop form.

L'11



fx
10 for t =0

(2) (t~~r),v~4) 40 for t > 0

then only the initial state vector is known the system

is still deterministic, but in this case the solution

can only be generated in open-loop form. It is inter-

esting to note here that even if perfect measurements

are available, the controller may still not be able

to generate a closed-loop solution depending on the

relative sizes of the computation time and the duration

of the game. There are only a few simple cases namely

with linear dynamics and quadratic pay-offs where

closed-loop solution can be generated in closed-form.

Other more difficult cases which recently have drawn

some interests from researchers are:

(3) h (t, X (.r) ,vi ('r)) X He (11 + vi(')

f or 0 4 -e . t

where H1 () may be either time-invariant or time-variant

*matrix.. v (1r) is additive white Gaussian noise. In

this case we have stochastic differential game with

linear measurements. Again only linear-quadratic dif-

ferential games have been solved with this information

set.



-{xo for t = 0(4) hi (t,x('r) ,vi (r fo=>

where xo is a random-variable usually Gaussian. Here,

we also have a stochastic game. A non-linear version

of pursuit-evasion differential game with this set of

information will be presented later-on in this report.

(5) hi(t,x(1),vi(r) = x(1 ) for 0 4< " £ t-

here we have perfect measurements with time delay.

Only a handful of papers about differential games were

generated on this set of information. All the authors

limited themselves to simple problems in this case

because of the tremendous complexities involved.

Once the measurement is made and one of the information

set from those listed above is formed, a control law can

then be generated. In deterministic cases, control laws

are generated directly either from analytical or numerical

solutions. In linear quadratic stochastic cases, it is well

known that the"CertaintyEquivalence Principle" or the

"Separation Theorem" can be extended from the theory of

stochastic optimal control. That is, the estimation process

can be carried out first using some type of filter, the most

well known being Kalman Bucy's, then the estimated states

can be used to generate a control law as if they were

13
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deterministic.

Furthur classification of differential game can be
N

made from the cost functions. If . J = 0 then thei=l i

game is called the N -person Zero sum differential game

If .7l Ji / 0 then it is called N-person non-zero sum

differential game. One important class is the two-person

zero-sum differential game. This is the class of differ-

ential game that we shall be concerned with throughout this

dissertation. An exact formulation of two-person zero-sum

differential game will be given in the next section.

I

1.3 Differential Game Formulation

From hereon in this report, we shall be concerned with

two-person zero-sum differential games, whose formulation

is given as follows:

There are two opposing players U and V who choose their

control strategies to drive the equation of motion of the

dynamic system:

d x(t) = f(x(t),u(t),v(t),t]; x(O) = 2O (1.11)
dt

where

x(t) = state vector of dimension n x 1

u(t) = control input of the minimizing player,

dimension m x 1

v(t) = control input of maximizing player,

dimension p x 1

14



The duration of play [0,T] is fixed, the terminal time

T is given explicitly in the problem. The vector function

f is assumed piecewise continuous during the interval of

play, and differentiable up to any order required in all its

arguments.

The vector control functions u(t) and v(t) are piecewise

continuous, differentiable function of time, and belong to

some prescribed feasibility regions u(t) t U and v(t) 4E V

where

U = [U: l(x,u,t) £ 0] (1.12)

V = [v: 2 (x,v,t) 4 01 (1.13)

a, and 22 are vector state and control contraints,

dimension < m and p respectively

U is minimizing and V is maximiaing the following scalar

cost functional:

T
J(u,v) = F(x(T)) + L(x(t),u(t), v(t),t)dt (1.14)

The scalar functions F and L are also continuous and

differentiable up to any order required in their arguments.

The feasible regions U and V generally preclude the

use of infinite controls by either player. They usually im-

pose hard limits on the control vectors. Equation (1.11)

15
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implies that both players agree on the dynamic structure of

the system. In reality this is always an approximation.

The practicability of the solution then depends on how close

one can model (1.11) to represent the real system. This is

not surprising, however, since in all mathematical modelling

of real physical problem, some simplified assumptions gen-

erally have to be made to ensure mathematical and computa-

tional tractability of the model of the problem.

Note that generally the terminal time T does not have

to be given explicitly. Instead a terminal manifold of the

form V (x(T) ,T) =0 can be described. This, however, can-

not ensure the termination of the game. Therefore, the fixed

duration game which can be considered as a special case of

terminal manifold where Wp(x(T) ,T) =T-t = 0 is chosen here

to eliminate any termination problem that may arises in

order that other important concepts can be investigated and

clarified.

It is also interesting to note that if hard limits are

not imposed on the controls in (1.12) and (1.13), then

additional assumptions will have to be made on the controls

to ensure that the magnitude of the optimizing controls will

be finite. This is done in McFarland(18 ):. Briefly, he

* . defines regions of finite controls Cv and Cu such that when-

ever U try to use infinite control in minimizing then V can

choose v(t) E CV to drive the cost functional very large.

Similarly, whenever V try to use infinite control in

16



maximizing, then U can choose u(t),G Cu to obtain very small

value for the cost functional. These assumptions are not

required in this report.

1.4, Objective and Scope of Dissertation

As mentioned before on the opening statements of this

chapter, an efficient algorithm is needed before a solution

of pursuit and evasion differential game can be implemented

effectively. Most of the results of the computational

methods developed so far have been found under the assump-

tion that the saddle point exists. A discussion of this

point and a counter example will be presented in the next

(18)
chapter. McFarland worked out an algorithm without

assuming existence of a saddle point. He uses Differential

Dynamic Programming from the work of Jacobson an Mayne(
30 )

for inner optimization and gradient method for outer opti-

mization. McFarland results, however, does not contain any

hard limit on any control or state constraint as in (1.12)

and (1.13). Our work then will be as follow:

1.4.1. Using an approach similar to McFarland's, an

algorithm will be developed to handle hard limits on control

and state variables of differential games. The Differential

Dynamic Programming used in the inner optimizations will be

modified to handle the constraints. Some. gradient projection

schemes will have to be used to cope with the outer optimi-

zation. This will be presented in chapter 2.

17



1.4.2 A linear quadratic pursuit and evasion

differential game will be investigated. The case without

any control constraint will be solved analytically. Through

a simple illustrative example, physical outcomes correspond-

ing to parameters of the problem will be investigated. The

case with control constraint cannot be solved analytically.

Two numerical solutions will be offered, one using the

algorithm developed in 1.4.1 and another using an indirect

approach with the assumption of existence of the saddle

*point and direct application of differential Dynamic Pro-

(31)gramming similar to the algorithm used by Neeland .and

later by Jarmark
132),(33),(34)

Any similarity or discrepancy, advantage and disadvantage

between the two methods will be reported. Chapter 3 will

cover this.

1.4.3 Chapter 4 will cover a stochastic nonlinear

model for a missle-anti missle intercept problem. A mathe-
I.

matical model will be developed using a set of sufficient

statistics as state variables. The problem will then be

solved using the algorithm developed in chapter 2.

1.4.4 Chapter 5 will summarized all the results

accumulated in this report. Recommendations for future

research will be presented.
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CHAPTER 2

DEVELOPMENT OF NUMERICAL ALGORITHM

It is widely accepted that for a general differential

game, a numerical solution is generally needed. In such

case, therefore, only open-loops form of solution can be

generated. However, if numerical algorithm can be developed

with such simplicity that the total computation and imple-

mentation time is much less than the duration of the game,

the process can be repeated with either the determined or

the approximated new states treated as initial states

depending upon whether the problem is deterministic or

stochastic. In this manner, a closed-loop solution can be

approached as a limit as the computation and implementation

times get smaller and smaller.

On the other hand, one must be careful that in trying

* . to simplify the problem, assumptions are not made that per-

tinent physical realizations must be sacrified. Thus the

control engineer must strife to seek the delicate balance

between these two points. This is an optimization problem

in itself. The solutions which will be presented in this

* report will not be claimed as optimal in this sense but they

will be developed with these two points in mind.

Before we actually start off with the development of

the numerical algorithm, it would seem appropriate to

discuss the meaning of the solution of differential game
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to get a clear picture of what we are looking for. The state

of the art on numerical solution can then be surveyed to

pave our way towards the solution. The actual algorithm will

be composed of two parts: the inner optimization using

Differential Dynamic Programming with state and control

constraints, and the outer optimization using gradient pro-

jection. Finally, we shall conclude this chapter with the

details of the steps of the algorithm.

2.1 Differential Game Solution

In game theory, the solution for each player is the

choice of the strategy that he has to choose among many

possible ones. In choosing his strategy, a player canno~

be sure about the outcome of the game because he does not

have any "a priori" knowledge about his opponent's choice.

This is the fact that caused more complications in the

theory of differential games than just being simply an ex-

tension of optimal control theory.

In two person zero-sum differential game, the players

are two adversaries confronting one another with one's loss

being the other's gain. Therefore, each player will try to

minimize the maximal loss his opponent can caused. The

strategy that realizes this outcome becomes his solution.

Once the solution is found, the player does'not care what

strategy his opponent will use. He is that much better off

if his opponent does not use the strategy that caused him

the maximal loss, it is for this reason that some authors

20



have called this type of solution the security level of the

game.

In the following discussion, let us designate the two

opponents as follows:

minimizing player = U, using control = u(t)

maximizing player = V, using control = v(t)

t is any instant between the interval [0,T]

the cost functional of the game, J(u,v) is in the form

of equation (1.14)

First, let us look at the minimizing player's, U,

point of view. For any arbitrary control u(t) that he

chooses, he is assured that at maximal the cost will be

A
J(u,v) = max J(u,v) (2.1)

V(t)

A
Naturally, U will choose the control u(t) which will mini-

mize the maximum cost

A A

J( u, v) = min [max J(u,v)] (2.2)
u(t) Y(t)

Thus, the solution for U is the so called minnimax solution,

A A
u(t). Note that U does not care whether V will use v(t) or

not because from equation (2.2) we can see that

A A A A
Ju,v) 4 J(u,v) for v v (2.3)

21
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The equality in equation (2.3) is included because of the
A

possibility of the non-uniqueness of v. Therefore, U will
A

usually gain if V uses any other control besides v.

Now, from V's point of view, for any arbitary control

v (t)

J (, v) = min J(u,v) (2.4)
u(t)

V is assured that his cost will be at least J(Ziw,v). Since

his objective is to maximize, V will choose v(t) that will

maximize this minimum cost

J(UV) = max [min J(u,v)] (2.5)
v(t) u(t)

Thus, v is the max min solution for V. Again V does not

care if U uses u or not. From (2.5) it is clear that V

will almost always gain and at least will not loose if U

uses any other control than u because

(_uV) >. J(Z,') for u _ (2.6)

A ~

The net cost of the game is Jlu,v). Generally, we can state

that each player will usually benefit from using the secure

strategies as depicted in the following equation

A A A
J( Ju,v) < J(u,v) (2.7)

22
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From a general viewpoint, there is absolutely no reason to

presume that

A

u = u and v =v (2.8)

If (2.8) is true, however, u and v will constitue a saddle

A __
point for the game,and the net cost, J(u,v), is called the

value of the game.

Definition 1:. The differential game described in section

1.3 is said to have a value if

Min [Max J(u,v)] = Max [Min J(u,v)] (2.9)
u(t) v(t) V(t) u(t)

where u ranges over U and v ranges over V.

Definition 2: If a game has the value J*, and if there

exists (u,v) such that J* = J(u,v ) and

J (u*V) J< (U V < J (u, v* (2.10)

then u is optimal for U and v is optimal for V.

The pair (u*,v*) is called a saddle point. u and v are

called pure strategy solution.

Most of the previous works on differential game have

been concentrated on pure strategy solution, and the condi-

tions for which it exists. However, for a general nonlinear

nonquadratic problem a saddle point does not generally exist.

23
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Two examples will be shown here to demonstrate this point.

The first one is dued to McFarland 118) concerning a single

stage static game. The second one is dued to Berkovitz (35)

concerning differential game with nonlinear dynamic.

Example 1: Let the controls be scalars u and v and the cost

be the polynomial function of u.and v as follows:

J(u,v) P 4-2u2+2) (-v4 .+ v2 + 2) + (u3-3u)(v 3-2v) (2.11)
1i8 8 5 i 9

The cost function is formed in such a way that neither U nor

V can use infinite control in their optimization process.

Using previous terminology cv = [v: |v.:I< 2] and cu =u:u(R]

where R is any number on the real line. The solutions to

this problem are:

A A
For player U, Minmax: u = + 1, (v = + 1)

AA
J(u,v) = 1

For player V, Maxmin: v = 0, (u = +1)

J(u,v) - 2

A
Net cost of the game: J(u,v) =2

3

It is interesting to note that McFarland called the points
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(+l,+l) and (-1,-I) local saddle points. These points,

however, are not saddle points according to the definition

given above. Using definition 2, it is obvious that the

saddle point does not exist in this problem. This differ-

ence occurred because McFarland defined a saddle point as

the point where the gradients of the cost with respect to

controls simultaneously vanish accompanied by some simple

second order condition. In this report, the name saddle

point will be preserved for such point when the control

pairs of the minmax and the maxmin solutions are the same

and pure strategy exists. McFarland also worked out the

solutions of this example in details which will not be re-

peated here.

Example 2: For a game of fixed final time T > 0, play ter-

minates at t - T. The cost function being minimized by U

and maximized by V is given by

J(u,v) = JT xdt (2.12)

The state x is determined by the dynamic equation and the

initial condition

* x = (v -u) x() x 0 (2.15)

The controls are constrained by u = U(t,x), where U is

4piecewise continuous differentiable on the interval (0,T]
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and 0 4 U(t,x) 1 1, and v = V(t,x), where V is also piece-

wise continuous differentiable on the interval [O,T] and

0 V V(t,x) 4 1.

Maxmin Solution:

For any arbitrary control chosen by V, U can choose the same

strategy and thus guarantee that

- = 0 on the whole interval [0,T]

Therefore, max min J(u,v) 4 x T
v u 0

For any pair (u,v), however, it is obvious that x > 0.

Thus,

J(u,v) = xdt x T

Therefore, max min J(u,v) - x T (2.14)
v u 0

Minmax Solution:

For any arbitrary control chosen by U, V can practically

guarantee that x > 1/4 on [0,T] by choosing his strategy as

follows:

1 i if u 4 1/2
v

0 if u > 1/2

using this strategy V can make x(t) > x + t
2 o 4-

Hence, min max J(u,v)). x T + T (2.15)
u v 8

Now, if U choose u - 1/2 30[0,T], then for any v,

x 4 1/4 on [0,TJ.
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Thus, upon integrating we have

min max J(u,v) e, x T + T2  (2.16)
u v 0

* From (2.15) and(.2.16) we can conclude that

min max J(u,v) = x T + T2  (2.17)U VO

In summary, we have J(u ,V) = XOT
A A2

J(u,v) =x T +T
0

Therefore, for this problem
A AJl(u"v') < Jl(u, v)

Again, a saddle point does not exist in this game, and the

game does not have a value in pure strategies.

From these examples, we see that even for simple games

(the first is a static game and the second even though has

nonlinear dynamic contain linear cost) saddle point does not

have to exist. Sufficiency conditions for saddle points

were worked out by many authors, but they are restricted to

a very limited class of differential game.

One question arises on what then is the true solution

of differential game in the case where a saddle point does

not exist. The celebrated Minimax Principle of game

theory asserts that in this case the players can find fixed

probability laws from which random strategy (among those
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possible) can be selected in such a way that the average

value of the cost sustained by each player comprises the

value of the game in the long run. The probability laws

that have to be found is contained in the mixed-strategy

solution. The main disadvantage for this type of solution

is that it is not only hard to implement but also exceedingly

complicated if not impossible to solve for in a realistic

* pursuit-evasion differential game. All the researchers

who worked on mixed-strategy had to resort to very simple

problems which bear little or no physical significance.

At the present, we should be contented with the

security level type of solution. The minmax and the maxmin

solutions provide the least-maximum-loss strategy for each

player. If the player can accept the cost accrued from

using his. least-maximum-loss strategy, then he can rest

assured that he will not be worse off no matter what strate-

gy his oppenent will use. One critical argument against

this type of solution is that it is too conservative.

However, in view of the fact that numerical solutions are

needed for all realistic pursuit-evasion differential games,

all the strategies implemented will be suboptimal to some

extent. The less complicated the solution can be the closer

it will be to a true optimal. In addition to the computation

and the implementation time involved, this should more than

outweighed any advantage that could be gained by using the

4 mixed-strategy solution. This report then will be aimed at

28
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finding an efficient algorithm to solve for the least-maxi-

mum-loss strategies or the minmax and the maxnim solutions

without the assumption of existence of a saddle-point.

2.2 The State of the Art on Numerical Solution

As mentioned before in section 1.1, Berkovitl10 )used

calculus of variation approach to form a set of equations

(2 2)for two person zero-sum differential game. Blaquiere

also has a similar development but the emphasis there is

put in the geometric aspect of the game. These works have

become the basic fundamentals for most numerical methods

developed thereafter. Most authors require the assumption

of the existence of a saddle-point to provide the pure-

strategy solution. The main feature for these techniques

uis having to solve a two-point boundary value problem (TPB

VP). This type of problem is encountered very frequently

in optimal control theory and in mathematics, they involved

a set of differential equations with initial conditions

given on some variables and final conditions given on the

rest. Since the optimization process using this approach

does not involve evaluation of the cost function directly

' in each iteration, it has been labeled the indirect methods.

Bryson and Ho(28 ) suggested that numerical methods for TP

0J VP can be cagegorized into three methods: gradients,

quasilinearization (Newton-Raphson), and neighbouring ex-

tremal.

(30)Recently, Jacobson and Mayne has added a very
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efficient new technique to solve the optimal control problem

using Differential Dynamic Programming (DDP). This method

differs to the above indirect methods in that rather than

having to solve the TPBVP, a set of associated equations

are derived with all the final values given. The task of

integrating backward is much simpler than the task of solv-

ing the TPBVP. Moreover, the convergence time of DDP is

generally found to be more rapid than any of the three

methods mentioned above.

All three indirect methods mentioned have some common

features. Each method start off with some nominal solution

for which some boundary conditions are satisfied, and each

use informations provided by a linearized solution about

the nominal solution to improve the solution for successive

iteration until all the boundary conditions are satisfied.

The rate of convergence differs greatly as they are applied

to various problems. Generally, the gradient method exhibits

a fast convergence to start off but becomes relatively poor

near the optimal. Some phenomenal such as zig-zagging has

been known to be closely associated with this method near

the optimal value. Newton-Raphson or quasilinearization

converges quadratically near optimal but the initial guess

must be chosen very carefully. Tb this end neighbouring

extremal is generally even more sensitive to the initial

guess.

All gradients methods exhibit one common difficulty

namely the so called "step-size" problem. That is, after
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a feasible direction is found using the gradient, how far

should the control correction be applied in that direction.

Too small a step-size will cause a drastic decrease in

-- convergence rate whereas too big a step-size sometimes leads

* to non-convergence. There are two basic. techniques to take

care of this problem. The first one was devised by Jacobson

an Mayne (30 ) and used effectively by McFarland (18 ) in his

dissertation. This has to do with adjusting the time inter-

val [V,T] on which the new control is found in such a way

that the variation of the states is not too large. The

second technique was introduced by Jarmark(32) , (33) , (34)

where the quadratic terms of the controls are added to the

integral terms of the cost functional and the weighting

matrices are chosen in such a way that again the variation

in the states is acceptable. Both techniques have exhibited

.- very good convergence property.

Leffler(36) developed theortically a numerical algorithm

containing two phases. The first is called the "gradient"

phase in which the directions of the control changes are

computed, and the second is called the "restoration" phase

* . which is needed to keep the new control within the feasible

region. Theoretically, Leffler's algorithm is capable of

handling constraints on both states and cbntrols. Computa-

tionally, however, the pursuit-evasion problem that he solved

does not include any significant constrainton either the

states or control inputs of each players.
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On the application aspects, Robert and Montgomery (37 )

attempted to solve a classical pursuit-evasion problem. The

distance between the two aircrafts at the time of closest

approach was used as the cost index. They were successful

in obtaining the optimal trajectories for most initial con-

ditions. They also found some regions where the trajectories

are not unique and remedied the situation by adding the time

until interception term into the cost function. The dynamics

were non-linear and the controls were subjected to hard con-

straints. The computation time required, however, was very

large. Approximately the computation time was ten times as

great as the engagement time in their report.

The most complex air-to-air combat model so far docu-

mented was worked out by Lynch(38). The emphasis was to form-

ulate and solve as realistic a mathematical model of air-to-

air combat as possible. A three dimensional model was used.

All the involved factors were considered. Thrust, drag, and

lift were stored as a monlinear function of altitude and

airspeed. The controls were roll-angle, thrust, and turn

rate with the latter two subjected to hard oonstraints. The

cost index used is the time required for the pussuer to

manuver closer to the evader than some given radius. Again

Lynch used the gradient method with the same step-size

adjustments as Robert and Montgomery to obtain satisfactory

convergence for most initial conditions. He also reported

o •on singular surfaces where non-unique solutions were

encountered. Needless to say the computional time needed
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were horrendous. Roughly the requirement for the computa-

I tional time is one hundred times in magnitude as compared

to the simulated encounter time.

Leatham(39) also studied the same model mentioned above

using the method of "neighbouring optimal trajectories".

This method is closely associated to the "successive sweep"

w method of Dyer and McReynolds.(40) The details will not be

described here, interest readers can refer to the above

references. It might be worthwhile to mention, however,

that even if the missing initial conditions can be accurately

guessed, the computational time for this method took roughly

twenty times greater than the time of engagement. Dethlef-

(41)sen performed an analytical analysis of neighbouring

optimal method for a much simpler problem. No numerical

result, however, was included in that report.
Gaa (42)

Graham 4  entended the quasilinearzation technique of

optimal control to cover the first -order necessary conditions

he derived for differential game. The technique was then

used to solve a pursuit-evasion game involving a ground-to-

4 air intercepter and a supersonic airplane essentially the

same unconstrained problem solved by Leffler. This method

is very sensitive to the choice of the initial trajectory.

4The magnitude of the computational time is approximately ten

times that of the encountered time.

Neeland(31) used Differential Dynamic Programming (DDP)

4to develop algorithm to solve a realistic air-to-air combat
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game under the assumption that the saddle point exists.

Even though the development of the algorithm contains the

term up to second-order. The actual algorithm used to solve

the pursuit-evasion problem is actually a first order

algorithm which is practically required because he was look-

ing for a very fast computation time. He actually reduced

the computational time to be smaller than the engagement

time in the non-sigular case. Jarmark also confirrec! this

for a large number of sample problems. Therefore, we mu'st

conclude that of all the techniques available so far, Dif-

ferential Dynamic Programming is the most efficient one.

Details development of the first order algorithm of DDP will

be included in the next section.

All the methods discussed so far have been under the

assumption of existence of a saddle point. Reports with no

a-priori assumption of a saddle point have been rare indeed.

McFarland worked out one such report. Besides having no

assumption of a saddle point, his technique differs from

the indirect method in that the evaluation of the cost

function is required in each iteration. Therefore, McFar-

land's technique is sometime referred to as a direct method

or a direct solution technique. Briefly for an arbitrary

4 control the inner optimization of this method is performed

by using second order DDP to locate all the local maxima

(minima) created by the opponent's control. The player's

control is then adjusted by using either the "steepest decent"
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or the "conjucate gradient" methods. This adjustment is

called the outer-optimization. The process is then

reiterated. Since McFarland does not consider any control

* -or state constraint, the termination criteria occurs when

the variation of the Hamiltonian with respect to the player's

control is negligible in which case a saddle point is located

or when a cross-over point is located in which case the

solution will not be a saddle-point. The exact definition

of a cross-over point will be given in the following section.

2.3 Differential Dynamic Programming with State and Control

Constraints

We shall start our development with the inner optimiza-

tion process. Even though the actual derivation is for a

maximin solution, it can also be applied to a minmax solution

simply by the substitution of control variables and the inter-

change between the minimization and the maximization within

the procedure.

2.3.1. Derivation of DDP with State and Control Con-

straints

For a maxmin solution, with any arbitrary control v(t)

chosen by V, the differential game formulated in section

1.3 becomes a constrained optimal control problem as follows:

Player U now chooses his control strategy to drive the

equation of motion of the dynamic system:.
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d x(t) = f(x(t),u(t),t); x(0) = xo  (2.18)

t 6 [0,T] = 0, T is fixed

x(t) £ X an n dimensional Euclidean space

u(t) u

U = [u: e-, Rm, g(x,u,t) 4 01 (2.19)

where Rm is an m dimensional Euclidean space, the

mapping is bounded by the constraints vector hyperplane

"(x,u,t)< 0 'of dimension C m

U is trying to minimize the following cost function

J(u(t)) = Lo L(x,u,t)dt + F(x(T),T) (2.20)

Since the starting time is arbitrary, we can rewrite

this cost function using the imbedding principle

J(X(t),t,u(')) = F(x(T),T) + x L(T ),u,(,-),,)d'r (2.21)

We then define

J (x(t),t) = min J(x(t),t,u(T?))
u (79

= min [F(x, (T),T) + L(x l),utr ,)d- ] (2.22)

4By using the well known principle of optimality in optimal
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control theory (2.22) can be rewritten as follows:

* _ ft+At d TIJJ (xlt),t) min [F(x(T),T) + L ddl+ Ld] (2.23)
u ('r

the arguments of the functionals L in (2.23) is the same

as those in equation (2.22). Combining the first and last

term in the bracket and using the above definition we have

J (x(t) ,t)= min [J* (x(t+ At) ,t+ At)+ 1 A L d] (2.24)

u W) it

Expand J*(x(t+ At),t+ At) in Taylor's series about (x(t),t)

for small At,

J**0 = min [AJ* t + i • f(x(t) ,u(t,t) . t+Ll(x(t) ,u(t) ,t)

At + o (At)] (2.25)

where o(At) - 0 as t-w 0
A t

Dividing (2.25) throughout by At and let At approaches zero,

we have

SJ*+ min [L(x(,u(t),t)+ J . f(x(t),u(t),t)] = 0 (2.26)-:t u(t) ax

the partial derivatives are evaluated at the point (x(t),t)

This is the well known Bellman's equation in the optimal

control theory and serves as a starting point for DDP. Define
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the Hamiltonian as

*T
H(x,u, J ,t) = L(x,u,t) + J • f(x,u,t) (2.27)

-- x x

* * * j* j

where J a J* a [a J* _ .... IJ ] (2.27)
x _X1  b x2 aXn

the superscript T stands for transpose. (2.26) then becomes

J (x (t),t) + min H(x*(t),u(t), J ,t) = 0 (2.28)

t u(t) X

Since we are dealing with the state and control constraints.

a penalty term can be incorporated into the cost functional

as follows

J(x(t),u(t),t) = F(x(T),T) + [L(x,u,t) +g, (x,u,t) dt

(2.29)

With constraints then Bellman equation becomes

J (x,*(t),t) + min [H(x*(t),u(t), Jx,t) +'" .g(x(t) ,u(t)]
t UuU_

(2.30)

where/IL is the Lagrange multiplier vector and can be solved

for by using the Khun-Tucker condition from non-linear

programming. This is included in the appendix A.

For now, it suffices to say that, the vector multiplier

function, L(x,u,t) is identically equal to zero when the

corresponding constraint is a strict inequality. Otherwise.

-T
,.t - - • T l u (u (2.31)
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. where designates the boundary in U or when the constraint

is a strict equality.

It is a well known fact that except for a few simple

cases, Bellman equation cannot be solved analytically. DDP

provides an excellent iteration procedure for numerical

solutions. We now proceed to derive pertinent equations

required for DDP.

Considered equation (2.30), if there exists a nonimal

x such that x (t) = x(t) + Ax(t) where&x(t) is small in the

- interval [0,T] then

J (_ + Ax,t) + min [H(i + &x,u,J ,t)
t ueU

T
+ x,ut) 3 x,u, t) 0 (2.32)

Expand (2.32) in Taylor's series to first order in Ax about

X and using the so called complimentary slackness in the

Khun-Tucker condition we get

,T

J*(x,t) + Jx (R,t) .Ax + Min [H(,u,J* ,t)

T

+ HT (_,uJ x  t). Ax + (J f(x,u,t)) .A x
X - xx

+ LL (x,u,t). _.(x,u,t). A x + h.o.t. = 0 (2.33)

h.o.t. stands for higher order terms in the Taylor's series

expansion.
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If Ax is very small, as Ax approaches zero, the higher

order terms also tend towards zero, and we can split (2.33)

into two parts as follows

21 J (xt) H- H(X,u J ,t) =0 (2.34a)
F x

21 J (3x,t) + H (x i ,J' t) + i f(x1u~t)
x -xx

T *p) 23b+ -g (3IAt /(X,!!,t) =0(23b

x

where u= min H(N,u,J ,T) or in words u is the feasible
UEU x

control withf which the Hamiltonian is minimized.

Since J (x(t) ,t) and J (x, (t) ,t) are functions of x(t)
x

and t, the total derivatives with respect to t are

*T

d J (X, t) = J(,t) + J (X,t).f(3x,i,t) (2.35a)

d J (Et) = (3Rt) + J (Xlt).-f (iRiit) (2.35b)
dt x t x xx

We now define an estimates cost change at time t as

a (t) =J (xt) -Jxt) (2.36)

where :Y(R,t) is the nominal cost that occured when U is using

the control strategy U(t). Note that

d (it) =-L,,t) (2.37)
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Substituting (2.35a) and (2.37) into the total time deriva-

tive of definition (2.36) we have

• t * *

a = (t(),t) + J (xt) .f(x,,t) + L(x,u,t) (2.38)

Notice that the last two terms on the right hand side of

(2.38) is the definition of a Hamiltonian. Using (2.34a)

for t J (x,t) then (2.38) becomes

-a(t) = H(x,u,Jx,t) - H(x,U,J t) (2.39)

Substituting (2.34b) into the negative of (2.35b) we obtain

x,t)= H (x,uJx,t) + J*xU ,t)/S(XUt)

• ,

+J [f(x,ut) - f(,ut)] (2.40)
xx

Consider the last term on equation (2.40)

J * [f(x,u,t) - f(x, ,t)] A J f ,ut) u (2.41)xx - x -_ - - •A

Expand the dynamic equation (2.18) about 3x-,u to the first

order, we get a differential equation describing an approxi-

mation of the deviation in x as follows

d A x = f X( ,Ut).4x + f (i , ,t) . (u
-d - - - - - (2.42)
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A xO) = 0 (2.42)

Throughout the derivation process, we are depending on the

assumption that A x is small. Therefore, (2.42) can be

used to show that f (Xut)" -u will also be small for small

AI x. This suggests that the term (2.41) can be neglected.
,

Neglecting the J terms in (2.40) introduces an error

A Jx(t) in J (t) of order

"T lu*(tl) - U(tl)j dt (2.43)

The integration is performed backward because the final

conditions of differ-ntial equations (2.40) and (2.41) are

given as we shall see later. We define

m

I.ul = l uil

The error Aa(t) in a(t) is of order

4 From (2.44) and 2.45), we can see that if either T - t is of
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order . or -u is of order e , then the error Aa(t)

2
is of order E while a(t) itself is of order . Thus,

we have shown that by neglecting the term (2.41), a(t) will

still be correct to the first order.

At t = T; J (x(T),T) = F(x ,(T),T) (2.46)

hence we have the following final conditions

a(T) = 0 (2.47)

J (X(T),T) = F (x(T),T) (2.48)

In summary, the equations that constitue the heart of

DDP in the case where the state and the control constraints

are present are

(t)= H(,U,Jxt) - H( ,U, Jx,t); a(T) = 0

-* T *

-(,t) H xU,Jx, t) + (Xu,t) ./.Llx, u,T); (2.49)
_ X

J (x(T),T) F (;, (T),T)
x x

2.3.2 DDP Computational Procedure

(1) Use a nominal control u(t), integrate (2.18) for-

ward to obtain a nominal trajectory ?i(t). Store x(t),u(t)

together with the computed cost 5(x,t) from (2.20).

(2) Integrate (2.49) backward from T to 0 while

simultaneously minimizing H(_-,UJx ,t) with respect to u(t)
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s- U to get u(t). Store u (t) and a(t).

(3) Again integrate (2.18) forward using a (t) and
, , * *

also compute J (x,t). If the actual cost change agrees

with the predicted cost change computed in (2) then u (t)

can be accepted as a new nominal control.

(4) If ta1)I < E where E is some small positive

number, then u (t) is regarded as optimal control. If not

then steps (1),(2) and (3) are reiterated.

(5) If the actual cost change differs too much from

the predicted cost change, then the "step-size" method can

be applied.

2.3.3 Step-Size Adjustment

Substituting the minimizing control in each iteration,
*

u (t) into (2.18), we obtain

d . .. +Ax) = f(i x, ,t); 3E(0)+Ax(0) x (2.50)
dt.

Because A x(0) - 0, the size of &x(t) is dued to the varia-

k: tion in control Au = u -%i as can be seen from equation

(2.50). One way to restrict the size of x(t) is to

restrict the interval of time over which (2.50) is inte-

grated. This is desirable since we do not wish to alter

the size of u t) found in the minimization process of

H(x,u,J ,T) in step (2) of the algorithm.
x

Throughout the derivation process of the DDP equation

(2.49), we were under the assumption that Ax is small.
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This is an important assumption, because if42X is not small

enough, then the higher order terms in (2.33) will not be

negligible. This in turn caused the actual cost change,

. AJ, to deviate too much from the predicted cost change, a.

Let 0 4 tI K< T, use nominal control u(t) from

0 4 t < ti, then x(ti)= _(ti) and x(t)=0 from 04t~tI.

Now, use the minimization control u (t) to integrate (2.50)

forward from tI to T. If [tl,T] is small, then x will be

small for finite u. Note that

a(i,t ) = [H(x,u, t) H(x,, t))dt (2.57)- x_ - -

One criteria to determine whether the actual cost change

"agrees" with the predicted cost change is as foliow:

> C; C >. 0 (2.52)
a(k, tI)

There is no strict rule to govern the size of C. It is up

to the judgement of the control engineer to decide what

positive number he should use for C for his particular

problem. Usually C is set around 0.5. It might be noted

that C should be less than 1 since the actual cost change

should not exeed the predicted cost change. This, however,

could happen.

If (2.52) is satisfied, then &x is small enough, and

the iteration process is repeated using the minimizing
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control as a new nominal control in the interval [t ,T].

Usually t1 is originally set at 0. If (2.52) is not

satisfied, then set tI = T and repeat. If the criteria

is still not satisfied using the new t then use t =

S I + tI as the new starting point of the interval for

integration. The process is repeated until the criteria

is satisfied. Figure 2 is used to illustrate this scheme.

0 t I  t1 - t"-- T
I I

Figure 2. Half interval scheme to control the size of AX

Following are a few characteristics of the "step size

adjustment":

(1) The new nominal trajectory may have a corner at t
I

because u(tI ) may be different from u (t ). The integration

routine used, therefore, must be capable of handling

differential equations with discontinuous controls.

(2) If the minimizing trajectory coincides with the

nominal trajectory during the latter portion of the interval

but the nominal trajectory is non-optimal in the earlier

portion, two steps must be taken: First,, a(t) must be

- monitered while performing the backward integration in step

(2 )of the routine,note the time t = teff when a(t)> 0 or

- when a(t) is equal to or greater than a small positive
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constant. Then [O,t ef f can be used instead of [0,T].

(3) Since computer is used in the routine, the

quantized requirement may eventually conflict with the

repetition in halving of the interval (0,T], i.e.,[tiJ

may eventually be smaller than one quantized step. ThisI
difficulty may be remedied by either adjusting C or use

a smaller quantization for the integration.

2.4 Gradient Projection for Outer Optimization

Two basic ideas are covered in this section. First

we must see how the function-space gradient of the minimum

cost with respect to variations in the maximizing control

v(t) can be computed. Second the fact that the search

direction must lead us to a new feasible point and yet

increases the minimum cost as much as possible must be con-

sidered.

2.4.1 Gradient Calculation

We are given J(u* (v),v).

To find the change in J due to a variation in v, we have

dJ = J + du. Z J
dv av dv

If the minimum obtained from the inner optimization

process is not on the boundary, then ) J evaluated at the

extremal would bi equal to zero. In this case then the

gradient of J with respect to a variation in v would be

qual to c J
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In general, the first-order necessary conditions that

u (t) minimizes J(u,v) for any given v(t) are

.,J (u,v) = F(x (T)) + L(x (t),u (t),v(t),t)dt (2.53)

., * *

x (t) = f(x (t),u (t), v(t),t); x (0) = x (2.53b)
0

* *-
JxH ; JX (T) =FX (x (T),T) (2.53c)

x

Hu +A "5u 0 (2.53d)

all the partial derivatives are evaluated at (x (t"'Jx

-u* It) ,v(t)).

Consider equation (2.53d), we anticipate that the

previously optimal quantities u(t),x (t),J Jx (t) will have

some variations with a small variation in the given v(t)

designated Av(t). We shall call these variations Au (t),

Ax (t), AJ and AJ x(t) respectively. Expanding (2.53d)

to first order and subtracting out all nominal quantities,

we get

T T *
(H +._ .gux )  x + (Huu +
(ux AaL - * x (H.

T*
+ (Huv + It .uv *v + f .AJ = 0 (2.54)

- -u

where care must be taken in the definition of the above
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partial derivatives to ensure that all the matrix and tensor

operations in equation (2.54) are compatible.

Moreover AJ can be approximated t6 the first order
x:..* * X

by J . ,x , equation (2.54) then becomes
xx

T T(H+ __. + f .J f . x +(Huu +!f .__) u
S-u xx

T
++ (H-v + "--v = 0 (2.55)

Solving (2.55) for the change in u with respect to a

small variation in v we obtain

i~jdu T -T-v = (H + -41 T (Hux +  + f -J )dx

UV uU+4 _Suu) *Uuxx4 -U xxTV

+H T
uv + "9-uv (2.56)

All the terms on the right hand side of equation (2.56)

contain second order partial derivatives. An error analysis

similar to the one given in section 2.3.1 can be given to

show that du* will be of second order as compared to the
~dv

variation V and AJ. Since we are dealing with a first

order calculation, du can be neglected. In general then

* the gradient of J with respect to a variation in v approxi-

mated to the first order would be equal to a J. It is

well known from calculus of variation that at any instant

4 t, 2J is equal to Hv.
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2.4.2 Gradient Projection

We are now dealing with the problem

Max [Min J] = Max J
v u V

s.t. j(xuvt) J 0 (2.55)

McFarland used the gradient as the search direction for his

algorithm. With the presence of the state and control con-

straints, however, the gradient direction may lead to an

infeasible point for the next iteration. It is obvious,

therefore, that some adjustments will have to be made to

counter this drawback. The most well known method in non-

* linear programming to handle this situation is the so called

"projection method". In essence, linear constraints, or

linearized constraints, form a linear manifold (defined by

the region formed by the intersection of the constraints).

The gradient direction can then be projected onto this
T

manifold to produce a search direction s such that J* .s >0

so that the movement in the direction s will cause an
*

increase in the functional J at a new feasible point.

Let A be the q x p matrix of active constraints.
q

Actually A will depend on v, this dependence, however, will
q

be suppressed here to save space.

piI

A = .............. .......... (2.56)

Lv J
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We note here that if the constraints are linear with respect

to the controls which is usually the case in the pursuit and

evasion problem, then the elements a. 's of the matrix Aij q

are just the eoefficients of the control variables in the

active constraints.

\east

~i.Csn~a'EC il~iveConstraint
CoS /ra

Figure 3 Gradient projection method applied at an active

constraint. If the constraint is nonlinear v(k+l) Tay be

infeasible.
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If the active constraints are linear, the search

direction s will lie along the constraints themselves.

* - If not, then the search direction will lie along the hyper-

planes tangent to the constraints at v kwhere the super-

cript (k) indicates the number of iteration. If v

proves to be infeasible as shown in figure 3, a restoration

phase will be used to move to the closest feasible point.

Since the problems we shall be dealing with later on con-

tain constraints which are linear with respect to the con-

trols, we shall be concerned only with such problem from

hereon. For this class of problem, at the end of each

iteration, we shall always end up at a feasible point.

To compute the projection, let us called the linear

manifold formed by the active constraints GI.Assuming

regularity of the active constraints, Ag is a matrix of rank

q< p. Since s must lie in CAL we must have Aq*s = 0.

Using the projection theorem in functional analysis, the

gradient J can be decomposed into two parts as follows:
U

*T
J =s + A -(2.57)

where s 6 £ and T

Multiply (2.57) throughout by A and use the fact that
q

A s 0 Owe have

qq
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From which we get-1-
= AqAq) A.qJ u(2.59)

aubstitue this back into (2.58) and manipulate then

s = [I-AT(A AT)- I A  J (2.60)q qq q u

The matrix

TT
P = [I-A (AAA) A] (2.61)

q q qq q

is called the projection matrix or the projection operator

on the vector J* with respect to the subspace d . The

outer optimization terminates when Jill is arbitrarily

small and all ;i B 0 where Bi are components of B

computed from equation (2.59).

2.5 Algorithm Steps

As mentioned before, we shall cover the algorithm steps

required only for the maxmin operation. The minmax operation

is similar with the interchange in controls for the inner and

the outer optimization and the appropriate change in signs

in the search directions.

Starting Procedure

(1) Select a nominal control v(t), vo(t), by suitable

logic using some physical insights or whatever is readily

available.

(2) Calculate all the local minima of J(u,yo) and rank

them in ascending order
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J) (n)
j ()( (2)) ~ .... J! (U YOII i)

where u = locally minimizing control i =1,2 .... n
-0

Following steps applied for the kt- and (k+l)t -

iteration (k = 0,1,....)

(3) Calculate J(1) and its norm Ii u
u
-k -k

where J1 = r J(l)T(t)'J (t)dt (2.62)
!!k Jo Rk k

~(i)

(4) If I, a small positive constant, exit
U1--k

a saddle point is located at (uk ,V). If not continue.

(5) Find search direction sk using

S j(l) (2.63)
k k lk

where Pk = I-AT (A AT F A (2.64)kqk Clk qk qk

(6) Calculate sjjIl fS sT(t).Rk(t)dt (2.65)

T --l a(1)
and (A AT  IA . (2.66)

3- qk qk qk !!k

(7) If 11Sk[I < , a small positive constant, and all
2

0 wereakare elements of the multiplier vector2. "2

exit a solution is located on the boundary of the problem.

If IISkII< F-2 and any (i / 0, remove that corresponding

constraint and go to (5). If >Sk f, 2 continue.

(8) Form new control
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4,

vk+l(t) = vk(t) + AkSk(t) (2.67)

where Xk is a suitable stepsize logic.

If vk (t) activates another constraint, then that

constraint must be added to the matrix A.k+1
(9) Calculate all the new local minima of Jk+l

(uVk+l):

(1) ((1),(~2) (2) (n)
(J) (u v ) J (U ,v )(u ,u
k+l k+l -'kl k+l k+l k+l k+l k+l -k+l

(10) If

ji (Ci) (1) (1)j()(u v ) < Jk~ (u D )- i. 1 (2.68)
k+l -k+l -k+l Uk+l'Vk+l

one of the previously higher minima has over taken the here-

tofore mincost. The crossover point has been overshot, go

to (11). If not increase the number of iteration by one, go

to (3), and reiterate.

(11) Find the cross-over point where

J (u ,v ) = (2.69)_
- k+l k+l -k+l k+l (u k+l'vk+l) (2.69)

where i is the index when the inequality in (2.68) is

true.

The resulting Vk+l that satisfies (2.69) is the required

maxmin solution.
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Find all local minima
using DDP and
arrange in ascending
order,

0 0 0

(2)

Calculate

J. and I
n n

(5))

Figure 4 Flow chrFfthiam oui n d
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CHAPTER 3

LINEAR QUADRATIC INTERCEPT PROBLEM

In this chapter, a general linear-quadratic differential

game will be formulated and reduced into a more simple form.

Analytical solutions will be presented in the non-constrained

case to illustrate the difference in the level of difficult-

ies between the cases when we have and when we do not have

the assumption of the existence of a saddle point. A linear-

quadratic pursuit and evasion differential game will be in-

vestigated. The case without any control constraint will be

solved analytically. Through a simple illustrative example,

physical outcomes corresponding to parameters of the problem

will be investigated. The case with control constraints

cannot be solved analytically. Two numerical solutions will

be offered. In the first one an indirect approach with the

8 assumption of existence of a saddle point and direct appli-

cation of DDP similar to the algorithm used by Neeland and

later by Jarmark will be used. In the second one the

algorithm developed in chapter 2 will be used to solve the

same problem without the assumption of a saddle point.

All the problems considered in this chapter will be assumed

to have perfect informations.

3.1 Formulation of Linear-Quadratic Differential Game

Generally, a linear-quadratic game will have the
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following cost functional:

J(u,v) 1/2 y(T)c cy(T)+I/2 T [uTltQutvtlQ(tldt

where y = n x 1 state vector (3.1)

C = T x n terminal weighting matrix r n

u = m x 1 control vector of player U

v = p x 1 control vector of player V

QI,Q2 m x m and p x p positive definite matrices

Note that cTc is at least positive semidefinite and that any

positive semidefinite matrix may be expressed as the product

TC C.

The state vector y(t) is driven by the following dyna-

mic and initial condition

y(t) = F(t) Y(t) + Gl(t)u(t) + G2(t)v(t); y(O) = o20
where P(t) =n x n system dynamic matrix (3.2)

Glt), 2 (t) = n x m and n x p system input distri-

bution matrices

The state vector y with dimension n can be reduced to

the more convenient and often more meaningful "reduced state

vector" x with dimension r 4< n. Define

x(t) S C §(Tt) y(t) (3.3)

where P(T,t) is the state transition matrix satisfying

"(T,t) = - (T,t) F(t); (T,T) = I (3.4)

Differentiating (3.3) we get

xt) C (T,t) y(t) + C §(T,t) y(t)
"'_ -Cj)(T, t) F (t) y(t) + C -t(T, t) F (t) y (t)

+ C (T,t) G1 (t)u(t) + C (T,t) G 2 (t)vlt)
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= G (t) u(t) + G2 (t) v(t) (3.5)

where G1 (t) = C j (T,t)G1 (t)

G2(t) = C §(T,t) 2 (t)

Note that x(0) =:C (T,0)y(0) x

x(T) = C (T,T)y(T) = C y(T)

Thus, the cost function and the dynamic can be rewritten as
T: T T

J(uv) = 1/2 xT(T)x(T)+1/2 (uTQ - vQ)dt (3.6)

and

x(t) =G (t)u(t) + G2 (t)v(t); x(O) = (3.7)
1 2=

Since no assumption is made in the derivation of this reduced

state form, it is as general as the form represented by

equations (3.1) and (3.2). The state x, however, is a more

meaningful measure of the game than y since x will indicate

what the game will end up with if no furthur control is

applied by any player.

3.2 Analytical Closed-Loop Solution

Analyses of the problem represented by equations (3.6)

and (3.7) will be presented in this section: one with the

assumption of existence of a saddle point and another without

such assumption.

3.2.1 With Assumption that Saddle Point Exist

The Hamiltonian of the problem is
H 1/2 (uT uvT 2 v) + T u + G2 v) (3.8

The costate equation is

= - 3H = 0 == = constant vector
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Then

~t) = X (T) = x(T) (3.9)

The last equality is obtained from the transversality condi-

tion.

Since we are dealing with the unconstrained problem,

Pontryagin optimality principle states that

u*uQ1- .G X= (3.10)

and
* T

H -Q 2v + G2 X = 0 (3.11)

Note that these two equations can be used simultaneously

because we have the assumption of existence of a saddle point.

Also the positive definitness of Q1 and Q2 guarantee that u

and v is rhe minimum and the maximum respectively. Thus

• -l T
u = Q G1 x(T) (3.12)

v = Q1 G TX(T) (3.13)
2 2

Substitue u and v back into (3.7), integrate from t to T,

and solve for x(T) we get

x(T) = W(t) x(t) (3.14)

where
-lT -T -1

W(t) = [I +t GIQ G1 d?- t G2Q2 G2 d-r] (3.15)

Therefore, the saddle point solution is

* lT
U (t) G - Q t) W(t)x(t) (3.16a)
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v (t) = Q 1 G (t) W(t) x(t) 13.16b)
2 2(31b

** TJ(u~v*) = 1/2 x (t) W(t) x(t) (3.16c)

3.2.2 Without Assumption that Saddle Point Exist

In this section the minmax and the maxmin solution must

be solved separately. With the existence of a saddle point

assumption, the condition that the solution exists is that

W(t) must be positive definite for all t in the interval

[o,T] of the game. We shall see that the condition becomes

more stringent without the saddle point assumption.

MINMAX SOLUTION:

First'we look for v that maximizes J(u,v) with an

arbitrary u For this purpose, equation (3.13) is still

valid and we have
A -i T
v(t) = Gx(T) (3.17)

v~t) 2 2-
Substitue v into the dynamic equation (3.7), integrate

from t to T and solve for x(T) we get

x(T) = P(t) [x(t) + GIL) u(1r)d -, 0 ( t ( T (3.18)

where

P(t) = - G2( 2 G T d-l (3.19)J. G2() Q2 G2 ('

For Pit) to exist we must have

-- 1.

[I- G2 () Q G di] > 0 for all 0 t4T (3.20)
2 2
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, then

v t = Q2 G2(tlPt) [x(t) + Glr)lu (r) d (3.21)2 2 i

A

Note that v(t) is globally optimal as long as (3.20) holds.

Since the starting time t = 0 is arbitrary, rewrite the

cost functional in equation (3.6) to complete the game from

time t and also substituting (3.19) for v and manipulate we

get
(A xT 1TT

J(u,v) = 1/2 x (T) P-Ix(T) + 1/2 J Q u d (3.22)it 1

using (3.18) in (3.22) then

J(u,v) = 1/2[x + Glud]TP[x + Jt G1 u d'] + 1/2 iTuTQ ud-r

(3.23)

Let u(1) varies by a small amount Au(r), expand (3.23) to

first order in Taylor's series and subtract out nominal

terms

A TT T T

AJ(u,v) = {[x(t)+ Jt) G ud$ P(t)G + u() Q A (C)

(3.24)

Since Au(-) is arbitrary, the variation of the cost function-

al is zero only when the term --------- = 0 in equation

(3.24) hence

i GT (1) P(t) [x(t) + Gldfl, t, T (3.25)
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To solve for u we multiply each side by G1 (1) and integrate

from t to T

t I  (T)d : Gl()Q 1 G C)P(t) [x(t)+ t UdiIde

(3.26)

Manipulating we get

-IG+u G= TGnlG Otdt -1 G 1Q_1 G T d-.
it it G1 G1d-

P(t).x(t) (3.27)
FT - T

Let A IQI G1 dr .P(t) (3.28)
it

Since A is positive semi definite, I + A is positive definite

for all t E [0,T]. Therefore the above inverse in (3.27)

always exists. Add x(t) to both side of (3.27)

x(t) + GlU(r)dT = x(t) - [I+A] - A . x(t)

{l-[I + A]-IA3 x(t)

= [I+A]- 1 x(t) (3.29)

Multiplying both side by P(t) we have

P(t)[x(t) + GlU(r)d-] + P(t) [I+ GIQ 1 GldovP(t)] X(t)

(3.30)
CT -1 T

Let A =Q G d1' (3.31)

1T

and B = G2Q 2 GT dT (3.32)
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then the right hand side of (3.30) becomes

RHS = [-] I+[I-BI-] J x(t)

= I-B+A] x(t)

Therefore

TJT -.1 T GQQd]-

i1 it-t xt

W(t)x(t) -(3.33)

Substitue back into (3.25) yeilds

A -lT
u7 = Q GC? W (t) x (t) t 44T (3.34)

A

Substituting u('V) into (3.20) and perform matrix manipula-

tion similar to the one above

A -1T
v(t) Q Q2  G2 (t) W(t) x(t) (3.35)

Comparing (3.17) with (3.35) we have

x(T) =W(t) x(t) (3.36)

Using (3.34),(3.35) and (3.36) in (3.22) we get

A A T
J(u,v) =1/2 x (t) W(t)x(t) (3.37)

!4AXMIN SOLUTION:

in this, case we first look for u~ Min J(u,v).
u
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Equation (3. 2) can be used to start off

-1 T
i(t:) - -Q 1 G(t) x(T) (3.38)

Substitue u(t) into (3.7) integrate and solve for x(T)

x(T) =M(t) (x(t) + JGiv ('1d' (3.39)

-:"-IT TT
where M [I +J G1 (1') QiT -l(r) (3.40)

hence Z(t) = -Q ( (t) [x(t) + ft G2(r)v()dr] (3.41)

Note that M always exists because A>O and I+A >0 for all

0 4t4 T. Then (3.42)

&J(vU) = JT {[x(t) + JT G2 vd! ]T M(t)G 2 () vT()Q21

Av(T)dr
for arbitrary Av(-r) again j.... } must be zero for the

variation to be zero, hence

(T) = Q21GT(-) M (t) x(t)+ i G2 vdl ], tT4T7 (3.43)

Premultiply (3.43) by G2 (t) and integrate from t to T

G2 1(l)v(l)dT = G2 (1) Q2 G2(1r)M(t) [x(t)+ J Gvdi ]d-v

(3.44)

Again (3.43) can be rearranged to give
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T G2 (-)v(7)dr = [I- T G2G2 d, .M(t)] . J 2 Q2 GT dr

S(t)x(t) (3.45)

Now

i-1 -
T[I- JQ G2Q2 1 G dr. M(t)] = [(M- (t)- T G2 Q2

1 GTdT)M(t)]-1

[ -1

= M (t) W (t) (3.46)

Therefore, the indicated inverse in (3.45) exists if W(t)

exists which is the same condition for the existence of the

saddle point solution. Substitue (3.46) back into (3.45)

J G2 (Tlv(TlTd = M-1(t)W(t) T G2 () Q2 G(ldTM(t)x (t)
t(3.47)

Add x(t) to both side, premultiply by M(t), and manipulate

to obtain

M(t) [x(t) + G(r)v dri W (t)x(t) (3.48)

Hence

= -i T 1%T 3.9
v() = Q2 G2 (t) W(t) x(t) t T (3.49)
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Substitue back into (3.41) to get

-1 T
u (T) -01 G1 (t) W t X Mt)50I T

and again J(uv) = 1/2 x t) W(t)x(t) (3.51)

3.2.3 Summary of Analytical Solutions and Discussion

All the above results may be summarized as follow:

SADDLE POINT SOLUTION

Optimal controls:

i!!: u (M) GQ (zt)Wlt)xlt)
* -l T

v (t) = Q G (t) W(t) x(t)
2 2

OptiImal Cost:

** T
J(u,v*) = 1/2 xT W(O)x

Condition for existence:

I + [T G1Q
1 G - TG2 2 GTdT > 0 0 t T

Jt 1 1 t 22

MINMAX SOLUTION

Optimal Controls:

A -1 T
u(t) = - Q 1 Gl(t)W(t)x(t)
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A -T
vt) = Q G (t) W(t) X(t)[~ 27

Optimal Cost:
A A T

J(u,v) 1/2 x W(0)x
.0 -o

Condition for existence:

d,"4i--'iI -J G Q-_T d >0 V 0 4t 4T
"'[: 2 2 G2

MAXMIN SOLUTION

Optimal Controls:
-1 T

u_(t) = -QI Gl (t)W(t)x(t)

-1 T
v(t) = Q G (t)W (t)x(t)

2 2

Optimal Cost:
T

J = 1/2 x W(0)x
0 -O

* Condition for existence:

I + GIQ1 Gdt - G2 Q2 G2 dt> 0 Y0 t < T

i"it

DISCUSSION:

Following remarks may be made about these solutions:

(1) Controls and costs are the same in each case,

thus a saddle point does indeed exist for linear-quadratic

differential game. The optimal cost in each case is the

value of the game and neither player can do anything

unilaterally to improve his cost.
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(2) Conditions for the existence of the sadd. point

solution and the maxmin solution are the same. For minmax

solution, however, the condition is more stringent. It

might be noted that if the necessary and sufficient for the

minmax solution is satified for a game, then the necessary

and sufficient condition for both the maxmin and the saddle

point solution will be automatically satisfied because the

missing matrix in the conditions for the latter two is at

*least positive semidefinite.

(3) All the solutions solved for this problem are in

closed-loop form which is indeed more desirable than the

open-loop solution. It might be noted, however, chat linear-

quadratic problem is about the only type of differential

game for which closed-loop solution may be solved analytic-

ally. Moreover, as we shall see later, if the constraints

on state and controls are added to the game, even for a

-linear-quadratic problem a closed-loop solution is not

always guaranteed.

3.3 An Illustrative Example Without Control Constraint

The example given in this section will be the same as

the one considered by McFarland. However, more extensive

results will be offered to gain a more meaningful insight

into the problem. Our goal here is to show that in contrary

to McFarland's implication that the linear-quadratic formu-

lation of a pursuit-evasion problem is likely to yield

trivial solution, this difficulty may be avoided by careful
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examination of the problem to avoid any conjugate point in

the solution. The incentive to present the illustrative

example in this manner is two folds. First it will be

shown that even simple unconstrained linear-quadratic

problem can have a meaningful physical realization. Also

in the next section, the same example with constraints will

be used to show that analytical solutions are not possible

in such case and numerical solutions with and without the

saddle point assumption will be offered.

.""+x e  Line of +xp

Intercept +* ' A!

V= X u "
-e I u

.I.p

EVADER PURSUER

L

.!

Figure 5. Simple Plannar Intercept Problem
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A simple planar intercept problem is diagrammed in

figure 5. xe and Xp are lateral positions of each players

who move towards one another with constant forward veloci-

ties se and sp respectively. The interception time or the

time when the players pass each other is T = L seconds.
Se + Sp

Each player controls his lateral position by using his res-

pective lateral velocities, u(t) and v(t), as control inputs.

Thus we have

x u, x (0) = 0
p p

(3.52)
Ix = v, xe(0) = 0
,e- e

Generally, x and x can be used as the states of the
p e

problem. But as we shall see, it is more convenient and

more meaningful to define a state x(t) as

x(t) = Xe (t) - x pt) (3.53)

Thus x(t) may be interpreted as the lateral miss distance

if both players use no further control from time t until

. the end of the game. Using (3.53) in (3.52) the dynamic

equation is

x(t) = v(t) - u(t), x(0) = 0 (3.54)

The pursuer is trying to minimize the miss lateral

distance at the time of interecption without using excessive

control energy while the evader is trying to maximize the

same miss lateral distance while using reasonable control.

Therefore, we have a two person zero-sum differential game
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with the cost function:

J(u,v) = 1/2 x2(T)+ 1/2 J (qu 2 - q2v2 )dt (3.55)

Using the results of section (3.2), the solutions are

u(t) = (t) = u (t) = W(t) x(t) (3.56a)

q,

A*
v(t) = v(t) = v (t) = W(t) x(t) (3.56b)

q 2
where

W(t) = (1 + T-t - T-t) (3.57)
qi q2

The necessary and sufficient condition for the minmax solu-

tion is

1- T-t 0 for 0 4t T (3.58)" :" q2

This is the same as the condition q2 > T. Substituting (3.56)

into (3.54) it is apparent that the only stable solution for

the resulting differential equation is x(t) = 0 for 0- t 4T.

Therefore
A - *
u(t) = u(t) = U (t) = 0 (3.59a)

v(t) = v(t) = v (t) = 0 (3.59b)

This solution makes sense in the pursuer viewpoint

since the initial lateral miss distance is zero and since

the evader is not making any move, the pursuer then can

hold his position until he runs into the evader at the time

of interception. From the evader's point of view, however,

this is indeed a strange solution since we would expect

him to do something to avoid collision with the pursuer.
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This strange result occurs because (3.58) calls for too

much weight q2 on control v(t) otherwise we would have

the maxmin solution '(t)- * However, we only have

this dilemma for x(O) = 0 which is the only case McFarland

considered. If we let x(O) = x # 0, then the solutions
0

are

A * q
u(t) = u(t) = u (t) = 2 x0  (3.60a)

qlq 2 - (ql-q 2 )T

A * q
v(t) = v(t) = V (t) = x (3.60b)

Sq1 q2  (ql-q 2 )T o

with the value of the game

A- qlq2 2
J(uv) = l q x (3.61)

2 (qlq2 - (ql-q2 ) T 0

The interpretation of this result can be summarized

as follow:

Case 1: q= q2 = q

A *
then u =u u 1 x

q 0

and J(u,v) = 1/2 x
0

.:In this case the evader cannot get further away from the
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initial lateral displacement if the evader is using his

optimal control.

Case 2: ql> q2

then from (3.60) u (t)I < Iv(t)I • Physically, this makes

sense because in this case since the pursuer is putting more

weight on his control, he is penalized more than the evader

if both players use the same amount of control. Therefore,

the pursuer is induced to use less control than the evader.

Also since
q q2

x(T) = x (3.62)
qlq2  (ql-q2 )T 0

x(T) is larger than x in this case. Moreover, the larger

ql is in relative to q2 ' the larger x(T) will be. Thus the

pursuer can escape if ql is large enough and the evader is

restricted to use a small amount of control. It is inter-

esting to note that, if the necessary and sufficient condi-

tion in equation (3.58) is satisfied, x(T) cannot be nega-

tive with respect to xO.

Case 3: q < q

Athen Iu(t)I > lv(t)I

the evader is induced to use less quantity of control in this

case because more weight is being put on his control. From

(3.62), x(T) is smaller than x in this case and the pursuer
0

can get closer to the evader than the initial lateral dis-

placement. Interception can be made if q2. is large enough.
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The magnitude of q2 required for interception depends upon

the radius of interception, the magnitude of xo, the time

of interception T, and the weight q, on the pursuer control.

This example clearly illustrates that even a simple

unconstrained linear-quadratic problem can be meaningful

if it is set up carefully to avoid the conjugate point

difficulty.

3.4 Linear Quadratic Problem with Hard Limit on Controls.

In this section, we shall use the same illustrative

problem described in section 3.3. The cost function and

the dynamic equation are repeated here for convenience.

Cost: J(u,v) 1/2 x2 (T) + 1/2 J (qlu2  q q2 v)dt (3.63)

Dynamic: x 0 ~)-~),xO (3.64)

In addition we add the following constraints

This problem can be solved analytically, if the para-

meters are set up in such a way that u and v do not exceed

their limits. In that case the results are of course the

same as those presented in the last section. The actual

derivation for the conditions and the solutions for this

problem such that the optimal controls lie within the control

boundaries will be taken up in appendix B. Also in appendix

B, we shall demonstrate the equivalency between the closed

loop and the open loop solutions for this specific problem.

4 However, this problem in general cannot be solved

analytically. To illustrate this point, let us try to find
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the minmax solution. The Hamiltonian of the problem is

H = 1/2(g1 u2 - q 2v 2) + \(v-u) (3.66)

and the costate equation is

X=-aH 0 (3.67)
Ex

Therefore, X (t) = constant (3.68)

From transversality condition: X(T) = x(T) (3.69)

Thus X (t) = X (T) = x(T) ' 0 ( t C T (3.70)

Now, for an arbitrary u, maximize J with respect to v.

Pontryagin Maximal Principle states that
", * "_ *

H(x, u, v,1), t) > H(x,u,v,X,t) (3.71)

where indicates optimal quantities. Consider the terms

in the Hamiltonian which contain v, we have

2-1/2 q2v +>v (3.72)

if q2 <X, it can be shown that

v = sgnX' = sgn x(T) (3.73)

substituting (3.73) back into (3.64) yields

x = sgn x(T) - u (3.74)

integrate from 0 to T and rearrange

x(T) = xO + T . sgn x(T) - Jt udt (3.75)

It is not clear that x(T) and or sgn x(T) can be solved

from (3.75) unless all parameters includl.ng the arbitrary

u are assigned numerical values. In fact equation (3.75) is

transcendental.
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This problem then must be solved by numerical methods.

In the next section, two numerical solutions will be of f-

ered, one with the assumption of a saddle point DDP is used

directly to simultaneously solve for u and v, and the other

without the assumption of a saddle point the algorithm deve-

loped in the last chapter is used to solve for the maxmin

and the minmax solutions.

3.5 Numerical Solutions

Computer programs using Fortran Language in conjunction

*with the WATFIV compiler are written to obtain numerical

solutions for the problem described in the last section.

* These programs are listed in Appendix C. In the first pro-

gram, the existence of a saddle point is assumed, and DDP is

used to simultaneously solve for the optimal controls for

each player. In the other two programs, the minmax and the

maxmin solutions are searched for using the algorithm

developed in Chapter 2. As expected the program with the

saddle point assumption contains less number of programming

steps than each of the other two programs. We shall call

the solution obtained with saddle point existence assump-

tion the saddle point solution, and the other two the min-

max solution and the maxmin solution respectively for obvious

reason. A large number of batch jobs are computed using

UCLA Campus Computing Network's IBM System 360 Model 91.

The computation time for all three programs are extremely

fast. The execution time for all three types of solutions
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are essentially the same. For a typical set of parameters,

the execution time for all three programs are approximately

0.2 second each for an 8 seconds encountered between the

two players.

3.5.1 Algorithm Mechanization

An integration scheme is needed to mechanized the

algorithm for the DDP both in integrating the state equation

forward and also to integrate the set of equations (2.49)

backward. Since the structure of this problem calls for a

constant values for the optimal controls during the entire

interval of the game, simple Euler's scheme of integration

can be used to obtain accurate results.

To mechanize the algorithm on the computer, discretiza-

tion must be made. For this purpose, the encountered time

is devided into 64 increments. For a typical encountered

time of 8 seconds then each increment of time is equivalent

to one-eighth of a second.

Even though the programs are written to accommodate

the step-size adjustment described in section 2.5.3, no

step-size adjustment were needed for the large set of para-

meters on the trial runs on this problem. Equation (2.52)

is satisfied in all cases of the trial runs.

Table 1,2, and 3 are computer printouts of the saddle

point solution, the minmax solution, and the maxmin solution

respectively for the following set of parameters:

78
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L 180 kilofeet

Se 15 kilofeet per second

Sp 7.5 kilofeet per second

T L 8 seconds
S +Se+p

The control limits are chosen as ten percent of their res-

pective forward velocities

i 4 1.5 kilofeet per second

lul .75 kilofeet per second

For the saddle point solution, both initial controls

were chosen as zero. USTAR and VSTAR are the controls that

minimizes and maximizes respectively the Hamiltonian in

each iteration. Number "l" in the "step adj" column indicates

that the set of equations (2.49) is integrated backward to

the time t = 0. It might be noted here that the further the

algorithm progresses, the closer the predicted cost change

in the column "A(N)" agrees with the actual cost change in

the column "DELJ". For this set of parameters, the saddle

point solution converges in five iterations with approximately

0.2 second execution time. Both optimal controls are satu-

rated for this set of parameter. The value VSTAR = 1 in the

first iteration satisfies equation (3.60 b) of the uncon-

strained problem. Therefore, similar to optimal control,

the results here confirmed that a constrained differential

game cannot be solved as an unconstrained differential game
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and let the controls saturated when and if the resulting

controls exceed their limits. These values, however, can

be used as the initial controls for the algorithm as illus-

trated in the minmax and the maxmin solutions.

In both the minmax and the maxmin solutions, the initial

controls are computed from equations (2.60a) and (2.60b),

the saturated value is used whenever a control exceeds its

limit. In the minmax solution, the gradient of the maximum

cost in each of the overall iteration is always negative.

Similarly, in the maxmin solution, the gradient of the mini-

mum cost is always positive. This indicates that the right

*/ directions are being searched. Note also that the absolute

* values of the gradients form monotonic decreasing sequences

and thus assure the convergence property of the algorithm.

In the minmax and the maxmin algorithm, DDP is used for the

inner optimization, and gradient projection method is used

in the outer or overall optimization. For this particular

set of parameters, the minmax solution converges in two

overall iterations with four iterations of the DDP for the

first inner maximization while the maxmin solution requires

five overall iterations to converge but each inner minimiza-

tion converges in one iteration of the DDP. The total comp-

utation time for both solutions are again approximately 0.2

second each. Therefore, we can conclude that there is no

appreciable difference in the computation time of this pro-

blem for all three types of solutions.
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For all the large number of sets of parameters run for

this problem, all three solutions give the same answers for

the optimal controls. Therefore, even though it has not

been vigorously proved analytically, we may heuristically

say that the saddle point does indeed exist for this type

of constrained linear-quadratic differential game as con-

firmed by our numerical experiments.

For the particular set of parameters shown on table 1

through 3, equal weights are put on the penalties on the

controls of both player. In this case, we recall that the

unconstrained case calls for an equal amount of controls

from both players and neither the pursuer can get any closer

nor the evader can manuver to be further away than the

initial lateral displacement N. In the constrained case,

however, since the pursuer in this case is more limited in

his lateral speed, the evader can use his superior capabi-

lity to get further away than the initial lateral displace-

ment as shown by x(T) = 16 kilofeet when x = 10 kilofeet
0

in this case.

3.5.2 Effects of Parameter Variations

Table 4 illustrates the effects of changing the initial

condition xo with a fixed set of other parameters. As

expected, when the initial lateral displacement is small,

the solutions stay within the boundaries and are the same

as those obtained in the unconstrained case. For the set

of parameters shown in table 4, the solutions are the same
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for both the constrained and the inconstrained case for

Ixo4l .75 kilofeet.

With larger initial lateral displacement, the pursuer's

control becomes saturated. The evader can then take advant-

age of his superior capability to obtain larger final lateral

separation between the two; whereas we have noted before in

the unconstrained case that for ql =q which is the case

here, neither player can get any closer nor further away

from each other than their initial lateral displacement.

Besides making use of his superior capability, the evader

has another reason which induces him to use more control

in this case than he would have used in the unconstrained

case. That reason is the fact that the control limited by

the pursuer has introduced a relative saving in the cost

function for the evader.

The evader's control becomes saturated when xo is only

9 kilofeet whereas in the unconstrained case this same xo

would yield an optimal control of only .9 kilofeet per

second for the evader which is only sixty per cent of his

capability. For IxoI ) 9 kilofeet both players use their

maximum capabilities for their optimal controls. The lateral

missdistance is 6 kilofeet greater at the final time than

it was at the initial time. This difference is brought

about by the evader's superior capability and remains the

same for all Ixo 1> 9 kilofeet.

Table 5 and 6 show the effects of changing the pursuer's
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weighting factor q, when the evader's weighting factor

q= 0 and xo = 8 kilofeet and 10 kilofeet respectively.

The control limits in both cases are lul . .75 kilofeet per

*. second and Ivl.5 kilofeet per second. In table 5 we see

- that the pursuer's control is saturated for q,4 12. This is

not surprising because with relatively small ql, the gain in

the final lateral miss distance offset the penalty of using

more control for the pursuer thus he would use as much con-

trol as he possibly could. With larger q, however the

pursuer is forced to use less control than his limit. The

solutions for ql> 12 in table 5 are the same as the uncon-

strained case and the minmax and maxmin solutions converge

in one iteration. In table 6 both players are forced to

use their respective maximum control because of the relatively

iarge value of x 0

In table 7, the values of x0 , q1l, and q2 are doubled

when compared to the same parameters in table 5. Close

examimation reveals that the solutions in both table 5 and

table 7 follows the same relative pattern even though the

absolute magnitude of the unsaturated controls for both

players are lower in table 7 because of greater penalties

for the control inputs.

4 Table 8 and 9 demonstrate the effects of clanging the

control limits. In table 8, both players have equal capa-

bilities, the optimal controls in this case then depend

upon the relative values of the penalty weights ql and q2
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and the initial lateral displacement x0 . in table 9, the

pursuer's lateral capability exceeds that of the evader.

The limits on control inputs are interchanged if compared

to those in table 7, the pattern of the solutions, however,

is consistent if the limits interchange is taken into

account.

3.5.3 Discussion on the Algorithms

Before we close this chapter, several points can be

made on the algorithms used in this section.

(1) All three types of solution are the same for each

particular set of parameters. Therefore, we can conclude

that for linear-quadratic problem saddle point exists for

both the constrained and the unconstrained cases.

(2) The saddle point solution takes less programming

steps than each of the minmax solution and the maxmin

solution.

(3) Computation times are approximately the same for

all types of solution. All three types converge very

rapidly in most cases.

(4) The saddle point solution uses u(t) =0 and v(t)

-0 as initial controls whereas the minmax and the maxmin

solutions use the results of the unconstrained case as

initial controls (using saturated values wherever appropri-

ated). This, however, is a very minor modification since

the solutions for the unconstrained case is very easy to

compute.
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For ql= q2 10 u .75 v 1.5

.0 u v x(T) J

1.0 .10 0.10 1.00 0.50

2.5 .25 0.25 2.50 3.13

5.0 .50 0.50 5.00 12.50

7.5 .75 0.75 7.50 28.13

8.0 .75 1.00 10.00 32.50

9.0 .75 1.50 15.00 45.00

10.0 .75 1.50 16.00 60.50

11.0 .75 1.50 17.00 77.00

12.0 .75 1.50 18.00 94.50

15.0 .75 1.50 21.00 153.00

20.0 .75 1.50 26.00 270.50

Table 4. Effects of Variation in xo
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x 8 kft q 1 0 u .75 v 1.5

q u v x (T) J

1 .75 .98 9.86 12.25

2 .75 -.98 9.86 14.50

4 .75 .98 9.86 19.00

6 .75 .98 9.86 23.50

8 .75 .99 9.89 28.00

10 .75 .99 9.89 32.50

12 .75 .99 9.90 37.00

14 .74 1.04 10.37 41.48

16 .71 1.14 11.43 45.71

18 .69 1.24 12.41 49.65

20 .67 1.33 13.33 53.33

* Table S. Effects of variation in ql with xo = 8 kft
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x 0 10 kft. q2= 10 u .75 v 1.5r0

q u v x (T) J

1 .75 1.5 16.0 40.25

2 .75 1.5 16.0 42.50

4 .75 1.5 16. 0 47.00

6 .75 1.5 16.0 51.50

8 .75 1.5 16.0 56.00

10 .75 1.5 16.0 60.50

12 .75 1.5 16.0 65.00

14 .75 1.5 16.0 69.50

16 .75 1.5 16.0 74.00

18 .75 1.5 16.0 78.50

20 .75 1.5 16.0 83.00

Table 6. Effects of variation in q, with x= 10 kft.
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=16 q2  20 U .75 V 1.5

qu v* x*(T)

J..75 0.83 1.6.58 85.57

5 .75 0.83 16.58 94.57

10 .. 75 0.83 16.58 105.82

15 .75 0.83 16.58 117.07

20 .75 0.83 16.58 128.32

25 .70 0.87 17.38 139.12

30 .62 0.1'2 18.46 147.68

35 .55 0.96 19.31 154.47

40 .50 1.00 19.97 159.99

Table 7. Solutions when x0, q1 , and q2are doubled

as compared to those values in Table 5.
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X0 16 q 2  =20 u 1.~0 v 1.0

qu v X (T)

1 1.00 0.67 13.34 57.33

5 1.00 0.67 13.34 73.33

10 1.00 0.67 13.34 93.33

150.94 0.71 14.12 112.94

20 0.80 0.80 16.0 128.00

25 0.70 0.87 17.38 139.12

30 0.62 0.92 18.46 147.68

35 0.55 0.96 19.31 154.47

40 0.50 1.00 19.97 159.99

Table 8. -Solutions when both players have equal

capabilities.
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x 16 q 20 u 1.5 v .75

qu v x (T)J

1 1.50 0.34 6.68 22.33

5 1.46 0.36 7.26 58.18

10 1.14 0.57 11.42 91.43

15 0.94 0.71 14.12 112.94

20 0.79 0.75 15.71 127.86

25 0.66 0.75 16.69 138.33

30 0.58 0.75 17.37 146.04

35 0.51 0.75 17.90 151.97

40 0.46 0.75 18.33 156.66

Table 9. Solutions when the pursuer's capability

exceeds that of the evader
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CHAPTER 4
*~ 1

A NONLINEAR STOCHASTIC PURSUIT -EVASION PROBLEM

The most natural application of differential game

theory probably falls on a class of problem known as pursuit-

evasion where two or more adversaries engage in a combat type

-, mission. The state of the art of this problem has already

been discussed in Chapter 2 of this report.

In this chapter, a model for nonlinear stochastic

pursuit-evasion two-person zero-sum differential game will

be formulated. The problem will then be solved using the

simple algorithm developed in Chapter 2 for a set of desig-

nated parameters. Lastly, many aspects of the computational

results will be compared to those obtained by McFarland.

Several important features of two person zero-sum dif-

ferential games will be illustrated by the problem studied

in this chapter. The dynamics of the problem are nonlinear

using the set of sufficient statistic of the actual physical

entities. in this manner the elements in the set of suffi-

cient statistics can be treated as the state variables of a

* deterministic problem and hence reduce the complexities of

the stochastic problem greatly. Moreover, the values of the

cost function for the mirimax and the maxmin solutions of

this problem are not the same. Thus, we are presented with

a realistic problem whose solutions are not "saddlepoint"

and hence substantiating the fact that saddlepoint does not
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have to exist in a general differential game. This fact

also serves to strengthen the two examples presented in

Chapter 2. The cost function of the problem utilizes the

probability of survival as a probabilistic measure and pro-

vides a realistic flavor of a stochastic differential game.

Furthurmore, the information sets available to each player

are limited on only those state variables observable by

each player.

4.1. Description of the Problem

A simplification of the missle-anti-missle intercept

problem will be studied in this chapter. An incoming attack-

ing missle, maneuverable laterally, is trying to avoid being

intercepted by an antimissle, also maneuverable laterally.

The attacking missle, however, is also charged with the task

of trying to destroy an isolated target (a military install-

ation, an industrial complex, or any other strategic target)

and thus cannot stray too far away from a designated path.

"*' On the other hand, the antimissle which is trying to defend

the target is launched from an area on or near the target.

A ground support radar will keep track of the position of

the oncoming attacking missle and hence the defender will

have a full set of informations on both his own and the

enemy positions. The target defender will make use of these

informations and try to minimize the distance of closest

approach between it and the intruder. If it gets close

enough, the attacking missle is neutralized or captured
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Only one pass is allowed for this problem because once

the missles pass one another, the antimissle will not be

able to turn around and try to catch the attacking missle.

The control center of the attacking missle will be too

far away to observe the actual positions of both missles

by radar. However, with the present technology, it is not

hard to visualize an attacking missle with an on board

computing capability to compute its own displacement from a

designated path. Therefore, the attacking missle will only

be able to make use of the information on his own position.

The attacking missle is deemed to score or accomplish its

mission if it manages to avoid interception and yet reach

the target zone.

For this problem, we shall call the evader player U

and the interceptor player V.

To make the problem tractable, simplification assump-

tions will be made, nevertheless significant features of

the general problem will be maintained. The simplified

version of the intercept problem is illustrated in Figure 6.

One simplified assumption is that planar motion is assumed.

This is equivalent to a classical aeriel combat encounter

over a flat earth.

The mean initial line of sight (LOS) between the two

players has the length L. This line will be used as a basic

reference line for the problem. The initial position
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7 . .

dispersion along the reference line L is much less import-

ant to the problem than the lateral position dispersion,

since the variation in L only effects the variation in the

"interception time T" and the'target engagement time TS".

The interception time T is defined as the time when both

players reach the locus of distance of closest approach.

The target engagement time TS is defined as the time when

player U reach the line extended from the target perpendi-

cular to the line of sight L. Thus T and TS may be regarded

as fixed.

Both players'initial velocities are assumed parallel

to the line L. The lateral maneuvering of each player is

assumed uncoupled to the forward motion. This assumption

is not a serious determent to the realism of the intercept

problem since the lateral displacement will typically not

exceed 5% of L on either side of the mean initial LOS.

The initial lateral position of each player is assumed

a random variable normally distributed about L with the

mean equal to zero. The uncertainty in the lateral position

of the attacking missle arises from accumulated error picked

up during the launch and midcourse preengagement phases of

ICBM flight whereas the uncertainty in the lateral position

of the defending antimissle is dued to the inaccuracy in

controlling the violent acceleration subjected during the

launch phase which is assumed prior to commencement of this

problem.
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The capture zone r is a measure of potency of the

interceptor. The width of this zone depends upon the

characteristic of the proximity fuse used in the warhead

of the interceptor. The scoring zone rs is a measure of

both the potentcy of the attacking ICBM and the vulnerabi-

lity of the target. The width of rs depends upon the ex-

plosive characteristic of the warhead of the ICBM and the

vulnerability of the target being attacked. The target is

considered destroyed if the ICBM can get within the scoring

zone at the time TS. Normally .'r will be much smaller than

rs .

4.2 Formulation of the Problem

The missle antimissle problem described in the above

section will be formulated as a nonlinear stochastic dif-

ferential game as follows:

4.2.1 Dynamics of the Problem

The parameters that are important to both

players are their respective lateral positions normal to

the line L. As mentioned before, the lateral maneuvering

is assumed uncoupled to the forward motion, and the players

are assumed able to maneuver laterally by controlling

their lateral velocities:

X (t) = cu(t); Xu (o) = x ....... ... (4.1a)
u uo

v (t t ; v O ) = ............. • -i 4 .1b )
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where cu t) and cv(t) are instataneous lateral velocities

controlled by U and V respectively. The initial conditions

Xuo and xvo are random variables are normally distributed

with zero mean and the covariances &U (0) and v 10).

These probability density functions are shown by equation

(4.2).

f(Xuo) = 1 exp [-x 2 /2 02 (0)] ...... (4.2a)" (uo u
U

=2 2f(xvo) exp [-x o /2 v (0)1......(4.2b)

The lateral velocities c t) and c (t) are then functions

of random processes xu(t) and x vt). These velocities are

limited to within 10% of their associated average forward

speeds to validate the uncoupled asbumption.

The vector xT(t) = [xu(t)'. x (t)] is assumed to be
u I v

a Gauss Markov process where only two statistics, a mean

and a convariance, are needed to specify it completely. To

make this assumption valid, the system that generates the

process must be linear. Thus we are required to choose

cu(t) and Cv(t) as linear functions of xu(t) and x (t).

For the interceptor, player V, the important quantity

that will have to be minimized is the lateral distance

between him and the attacking missle U at the interception

time xu (T) - xv(T). However, at any particular time before

the interception time t < T, x (T) - xv(T) is not available

u v
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to V. Therefore, V has no choice but to use the most recent

corresponding information that is the best indicator for

Su(T) - Xv(T), namely x (t) - xv (t. Hence c (t) is defined

as

COOt =v~t)[Xu(t) -Xv(t)] ...... (4.3)

where v(t) = feedback gain function, to be found

as V's control

x (t), x(t) current states of each players

For the attacking missle, player U, the most important

measure for him is the distance by which he misses the

target, xu (Ts ), at the time when he crosses the target

boundary. Between the interception time T and the target

engagement time Ts, U is not at all effected by any action

on V's part during this interval. Therefore, the problem

in this interval is an optimal control problem with only

one player U starting from an initial state %u(T) and

minimizing the final state xu(Ts ) using "reasonable" control

along the way. The problem in this duration can then be

solved as a linear quadratic problem with the result

X (Ts) k xu(T), o<k< 1 . ...... (4.4)

where the fraction k depends upon the time duration Ts - T

and the weight on the control u(t). For this differential

game then, we shall assume that U can reduce x (T) by a
U

given fraction k during the interval [T,Ts]. Ideally U

would like to have his feedback function as a function of

xu(Ts) (since he cannot observe the state x (t) at any time).
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Hence

C u(t) = ut) xu (TS ) ........ (4.5)

with

u(t) = feedback gain function, to be found as

U's control

using (4.4) in (4.5)

Cu(t) = u(t) k Xu(T) ........... (4.6)

again it is obvious that U do not have Xu(T) at any time

prior to the time of interception equation (4.6) is not

causal. Therefore, the best he could do is to use the most

current information Xu(t) instead of it. Hence we have

Cu(t) = u(t) k Xu(t) ........... (4.7)

Substitue (4.3) and (4.7) into equations (4.1) we have

for 0<t4T

x (t) = [kxu(t)] u(t); xu (0) = x ............ (4.8a)u uuu

X (t) = [X (t) - Xv lt)] v(t); x (0)=Xvo ....... (4.8b)

in matrix form

x = F x ; x(O) = o .......... (4.9)

where

0 1
,--x uJ k ut) 0 Xuo

P - --- I -- - -{ xo.
x: v(t) a -v( vo
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Note that we have arrived at the same equation as

McFarland. However, different rationalizations have been

used. The reason for the difference is because it is felt

that the assumption cu (t) and cv (t) equal to zero in the

interval [t, T] used by McFarland later becomes a conflict

with the actual values of CU(t) and Cv (t) in the computation.

With the above rationalizations, however, no such assumption

has to be made.

Note also that equation (4.9) is linear since neither

u(t) nor v(t) is effected by the actual value of the random

variables x (t) and x (t). Therefore, we can say that u(t)
u v

and v(t) are not functions of xu(t) and/or Xv(t). Since ?o

is Gaussian given by equation (4.2) and x(t) is generated

by a linear process (4.9), the vector x(t) will remain

Gaussian.

We now proceed to derive dynamic equations for the set

of sufficient statistics of x(t). Since x(t) has dimension

2, the mean vector will be of dimension 2, and the covari-

ance matrix will contain 3 independent elements. Normally

then, the dynamics of this problem should consist of 5

equations. However, it is easy to see that the mean vector

is zero:

E [x(t)] = 0 t j [OT3 ......... (4.10)

since the initial value is zero as shown in equation (4.2).

The covariance matrix is defined as
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X 2-(t) x (t)x t)
[x x U VE [x(t)x T (t)] = X (t) =- ----- .--------

x2 (t) x

where designates the expected value of the quantity

under it.

Now, if x(t) satisfy the usual Lipshitz condition

then

T
Y (t) = d E[x(t) xT tI] E d [x(t)x (t)3dt dt - -

o T *T
-E [x(t)x (t)+x(t)x (t)]

T- F X + F x ......... (4.12)

Equation (4.12) can be expressed in components as:

2 2 2 _0 2 0

(x) k u(t) x (t) ; x 0) 1)(4.13a)
"u U U 0U

d (xux) = [ku(t)-v(t)] xuxv+v(t) x (t); x()X(0) 0

. ................ (4.13b)

d (x ) = -2v(t) x (t)+2v(t)x (t)x (t); X (0) = Or (0)..(4.13c)

Note that equations (4.13) are noilinear since the

controls u(t) and v(t) are indeed effected by the value of

the covariances of the state vector and the products of

control and state variables appear.

We can call x2  and state variables and use

equations (4.13) directly as the dynamics or the state
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equations of the problem. However, as we shall see later,

it is more convenient and more meaningful to use the pro-

jected intercept and the target miss as the state variables.

These variables are defined as

&

it) = xult) - xv (t) ............... (4.14a)

XT(t) f kx (t) ........... ... (4.14b)
T U

where

-* xi(t) = current value of target miss

XT (t) = current value of projected intercept

then

i (t) = u(t) x (t) - v(t) xM(t) (4.15a)
I T

x(t) = k u(t) x (t) (4.15b)
T T

Again, it is easy to see from (4.14) that the mean values

of x (t) and x (t) remains zero throughout the interval
I T

(o,T]. Define the covariance matrix as

x x
,-'i: x T =lxI~x T 72 =. ..x 2

T(4.16)

and again by the process similar to equation (4.12) we can

show that the elements of the covariance matrix satisfy the

following differential equations:

*2 2
x (t) = -2v(tlxo(t) + 2u(t)xl(t); X (0) = o 0 1)+ (0)

0o u Vy

(t;x() kO 2 ()(4.17a)
Xl(t) 1ku(t)-v(t -x(t)+u(t)x2(t); xl(0) k u(0)

(4.17b)
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262
2 (t) 2k u(t) x2 (t) ; x 2 ( 0) k U (0)..(4.17c)

Equations (4.17) generates a set of sufficient statis-

tics for the problem since i (t) and i(t) are zero through-

out the interval [0, T]. These equations then will serve

as dynamics or state equations for our problem. A success-

ful use of these equations in solving the problem will

demonstrate that a stochastic differential game can be

treated as a deterministic game if a set-of sufficient

statistics can be found and used as state variables in the

modelling of the state equations.

4.2.2 Cost Function of the Problem

In order to find the "best" controls for each player,

some criteria will have to be established to discriminate

one control from another. Since one of our goal is to try

to be realistic as possible, and since this is a stochastic

problem, the probability of survival of the target seems to

be the ultimate criteria. The attacking missle, wanting

to destroy the target, will try to minimize the probability

of survival of the target; whereas the interceptor, defend-

ing the target, will try to maximize the probability of sur-

vival of the target. We shall now attempt to find the

probability of survival as a function of the state variables.

P(survival) = 1- P(not captured and score)..(4.18)

= 1 - P(score/not captured)P(not captured)

The last step follows from the Baysean's Law of conditional
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probability. Using the definition of the scoring zone,

! r 1fOr -rs<xT(T)( rs

P (score/not captured, x (T))=

T 0 otherwise ...... (4.19)

Now

P(score, x (T.)/not captured) = P(score/x (T), not captured)

P (xT (T)/not captured)

Therefore

P(score/not captured) J s (T)/not captured
";: rs

............. 1(4.20)

where the conditional probability density function is defined

as

f [_g2=,fx ( ) - 1exp [- ' 2 /2X 2 (T)]
I T (T)/not captured r2 /x2 (T)

substitue this into (4.20) and use the symmetric property

of the normal probability density function

"' 2 s 2

P(score/not captured) = 1 exp [- /2x2 (T)]dg
::-W2 TI x- 2(T)

2
= erf ........ (4.21)

Lr2x 2 (T)

where rrs /T
erf s = 2 2x 2 (T) 22x2Tl 0

.... ... (4.22)

The error function (erf) is a Fortran built-in function

and can be called directly from the computer using Fortran
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language. Now

P(not captured) = 1 - P(captured)

Using the definition of the capture zone

1 if -r < x (T)< r
P(captured/x (T)) =c I c

."0 otherwise
. . (4.23)

Thus

P(not captured) = 1 fxi .........
c

since x (T) is Gaussian, we can show that
I

P(not captured) = 1 -erf r (4.25)
Vx~:........ (.5

substitue (4.2]) and (4.25) back into (4.18) we obtain
" [ xO (T), x2 (T)] = P(survival)

= 1-erf [ 3 T 1I-erf [re jJ
2x 2 CT) 0

........ (4.26)

By definition, both x (T) and x2 (T) must be positive.
0

From (4.26) when x (T) = 0 then P(survival) = 1. This

checks out with the fact that perfect interception ensures

certain survival. For combinations of low x2 (T) and high

So(T) the probability of survival approaches zero, this

again checks out with the condition when the attacking

missle successfully evaded the interceptor and yet manages

to reach the target.

In order to realize a reasonable and realistic controls

for the problem, and integral penalty function must be added
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to the cost function. The most direct method is to penalize

the squared values of the controls u(t) and v(t) with proper

weights. Using this approach, we define

:" ~ A foT  QU v

w I(u,v) f ( u2 (t) - 02v2 (t) ]dt ....... (4. 27)

where 01 and 02 are positive quantities representing appro-

priate penalizing weights on controls u(t) and v(t) respect-

ively. The actual choice of 01 and 02 will be discussed

later. The penalizing term for U is positive because U is

trying to minimize the cost function. This term will

restrict U from using "too large" control. Player V has

a negative penalizing term because he is trying to maximize

the cost function. Too large v(t) in any interval of time

could results in a negative value for I(u,v). The composite

cost functional for this problem will then be:

J(u,v) = % Xo(T), x2 (T) + I(u,v) ........ (4.28)

4.2.3 Constraints

This pursuit-evasion problem has been formulated in

such a way that the subsequent effective lateral vel, ities

will not exceed 10% of the associated average forward

speeds. Thus the assumption that the forward motion is

uncoupled from the lateral motion can be used throughout

this chapter. In addition, hard constraints are put on

ult) and v(t) as follows;

.u(til 2, v(t)l < 1 t f [o,T s  ....... (4.29)
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These constraints have an equiValent effects of limit-

ing the lateral accelerations of the missles. The larger

limiting factor for U as compared to V is used in order to

be consistent with other parameters which will be discussed

in the section on the computational aspects of the problem.

4.3 Convergence Control Technique

Before we embark on other computational aspects of the

problems, it is well to note here that the DOP algorithm

will not converge for this problem without the use of some

kind of convergence-control scheme. McFarland need the

"tsz" method developed by Jacobson and Mayne in solv-

ing his problem with good result. The so called "step-size"

method when used with the first-order algorithm developed

in this report, however, did not warrant convergence for

this pursuit-evasion problem.

obviously, some other convergence control scheme is

required. one such scheme which has demonstrated good

convergence property for a large varieties of problems was

developed by Jarmark in 1975. Anderson (43) has used this

scheme to derive feedback control for pursuing spacecraft

with excellent results. After the "step-size" method

failed to provide convergence for the solution of this

problem, several other convergence control schemes were

tried. It was finally decided that Jarmark's scheme was

the most suitable for this problem. This scheme will be

briefly described in the rest of this section. More
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detailed discussion and proof can be found in references (32)

to (34).

* The reason why the actual cost change deviates too much

from the predicted cost change is the violation of the

assumption that A x is small in the derivation of the DDP

equations and the higher order terms in equation (2.33) can-

not be neglected. Since the DDP algorithm worked out in

chapter 2 deals with the inner minimization, we shall also

deal exclusively only with DDP minimization here. However,

it is clear that the same technique can be used with inner

maximization for the minmax case also with only a few minor

adjustments.

(34)Jarmark has shown that the magnitude of A x(t) can

be restricted and the Taylor's series expansion equation

(2.34) can be made valid by adding a penalty term to the

integral of the cost functional equation (2.20). Thus

equation (2.20) can be rewritten as follows:

T T
J (u (t)) (x (T) ,T) +0[L(x,u,t)+ Au(t)Tw,&u(t)]dt

........... (4.30)

Then Jarmark proceeds to show by using Theorems and

Lemmas that:

S. , u in each iteration as measured by the metric

d(uiuil) = T u'u dt ........ (4.31)

can be made arbitrarily small by the choice of the weight-

ing matrix W.

•?.4
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2. There exists a W such that the series expansion

equation (2.33) and (2.34) is valid.

3. For W )0, a reduction in cost at each iteration

is obtained if &u(t) j~0 for some t C [0,T].

4. The solution of the artificial cost in equation

* -(4.30) converges to the same solution of the original cost

equation (2.20).

These are existence Theorems, and so far there is no

hard and fast rule on how to choose W. If the element of W

* is too large the convergence will be slow. On the other

hand, if the element of W is too small, the assumption A x

is small may not be valid. Jarmark suggests the following

procedure.

For a starting value choose a W base on prior experi-

ence on the same type of problems. The structure of the

problem could be used, for example, the elements of W should

be small when the problem is close to a linear problem.

After each iteration, the stopping rule will have to be

changed from ta(O)I< .6 to

Ia(0)I < ........ (4.31)

1 + *W

If the stopping rule is not satisfied then use the conver-

gence index domain shown in Figure 7 to adjust the element

of W.
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a ji

.001

.00

" a(0)

* . -j 0

Jlii

Figure 7. Convergence index domain

Area I: AJi < 0 ,do not except the iteration, increase
ai(O)

the component 2-5 times.

Area II: the element wi of W can be adjusted by the

following formula

w (1 - .A,/(a 1 (O)s))(Hiu+ wil
.. **... . . (4.33)
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Area III: use approximately the same value of wi in the

last iteration. wi may be increased or decreased

slightly in this situation. Increase if close to

. Ji axis, and decrease otherwise.

This procedure is used with very good convergence

property for the present problem.

4.4 Computational Aspects of the Problem

We now have the problem in which the attacking missle
A

U has to find u(t) to minimize the maximum possible cost and

.* - the intercepting missle V has to find v(t) to maximize the

minimum possible cost. The cost functional and the dynamics

of the problem as developed in section 4.2 may be written as

follows:

Cost Functional

J(u,v) l-erf[ r 1 { l-erf [.r T }

+0T  i2 2

+ [Qu (t)- Q2v (t)Jdt ........ (4.34)

Dynamics

;= -2vx0 +ux I 1 xO)= C) (0) + (0)

.......................................(4.35)
2

x1 [ku -v] x1+wc2  x(0) k V (0) ,..44.35b)

2 2
2  2kux 2  ; x 2 (0) = (0) ...... (4.35c)

-" U

These state equations are valid for t E [0 ,T]
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Constraints

u(t)I 2, Iv(t)i C 1 for 0 4. t. T .... (4,36)

4.4.1 Parameter Value Assignment

The missles engagement distance is assumed typically

around 35 miles or L = 180 kilofeet. The kilofeet unit is

used here because it is more convenient and more widely used

unit for this type of problem. As mentioned before the

forward motion is uncoupled to the lateral motion. There-

fore, only the average forward speeds for the players rather

than the instantaneous forward speeds in the whole engage-

ment time interval are needed. Typical forward speed for

the attacking missle is Su = 15 kilofeet/second while the

intercepting missle is typically slower at Sv = 7.5 kilofeet

per second.

At these average speed, the players will cross the

line of interception at the time:

T = L = 8 seconds
Su + Sv

The attacking missle, if escaped from the interceptor, will

cross the scoring boundary at the time:

T = L = 12 seconds

Su

Using these average forward speeds, the distance between the

line of interception and the target is:

•L = SvT = 60 kilofeet
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The initial lateral dispersions from the line L are

normally distributed with the mean zero for both players.

The initial lateral position of the attacking missle is

simply more dispersed because it involved more distance

and time covered before commencement of the differential

game. The initial standard deviation for U's lateral

position is 0' (0) = 3 kilofeet while that of V is
u

av(0) 0.5 kilofeet.

The fact that the scoring zone is larger than the

capture zone should be clear and has been explained in the

description of the problem. We shall assume r = 0.5 kilo-5

feet and r' = 0.25 kilofeet for the purpose of this study.c

A typical way of selecting the weights 01 and 02 for

the penalty functions of the controls is to use

-1 2
01 =T x maximum value of u = 32

1 =T x maximum value of v2  8

Experimentation around these values gives Q1 = 0.0625

and Q2 = 0.125 for the best results in this study. McFarland

also used these values in his report. Between the time of

interception and the target boundary crossing time, we have

shown that U can cut his lateral dispersion down by a fixed

fraction k depending upon the other parameter values. We

shall assume k = 0.5 for this report.

In summary, we shall use:

T = 8sec 0 u(0) = 3 kft rs =0.5 kft Q= 0.0625
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k = 0.5 ,(0) 0.5 kft r= 0.25 kft 92 = 0.125

4.4.2 Maxmin Solution

We shall follow the algorithm steps covered in section

2.5. To start off the algorithm for the maxmin control a

nonimal control vo(t) can be approximated by maximizing the

cost functional equation (4.34) subject to the dynamic

equations (4.35) with control u(t) = 0 Yt E [0,T]. Using

this nominal control for V will have the effect of forcing

U to do "something" in order to minimize the cost functional.

With u(t) = 0, the state equations (4.35) become

x,-2VXo x•(0 = o2 2
xo  - " (0) =o (0)+ a (0) ....... (4.37a)

0u v

1 vx XlC) = k 0'2 (0) ....... (4.37b)

•X -k22

2 2kux2  x2 k 2 r (0) .......... (4.37c)

With these state equations, the Hamiltonian is:

:'" Ol 2 Q 22
2H = - - 2vx - VXl . . . . . . . (4 . 38 )

where V's are costate variables expressed by the following

differential equations:

= - xvo ; X(T)= .... (4.39a)
' • XO O a XO (T)

= - = vX (T) = 0 .... (4.39b)

X2 = - XH = 0 ;X 2 (T) = _ _ _ .... (4.39c)
SX2 "1 x2 7T)
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Assuming for the moment that Iv(t)I < 1 for 0 <, t T,

the optimality condition is:

'a -2Qiv - 2o - x= 0

Hencev(t) =-(2x~ 0\0 + X1 X 1 )/2Q 2.. . . ...........(4.40)

Differentiating (4.40)

v(t) t-(2x 0 )0 + 2x0 0 + >1 + x>%1 )/2Q2  (4.41)

Using (4.37) and (4.39) in (4.41) we have

v~) -(-2vx >. + 2vx~ x. vx 1 >x+vx XQ/2Q2  0 .(4.42)

*Therefore, v(t) =constant (4.43)

Now, equations (4.37) and (4.39) can be solved analytically

with the following results:

* x Mt = x M0e-v X. Mt = >1 (T)
0o 0 0

*~~~ M.x1  = x1 (O)ev M1 t = 0

x2(t) =X 2(0 > 2(t) X2

............ (4.44)

Substitue (4.44) back into (4.40)

v(t) = -2x(O) xO Me x 2vt. .............(4.45)

and from (4.39a) we have
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i*
(T ) [c 2 e-r2/2Xo(T) .erf 

(2x 0 T)) 3/2 LrJ2 k o()J

........ (4.46)

Use x (T) = e - 2 v T [0210)+ a (0)j in (4.46) and substituting

back into (4.45).yeilds

r 2 2 2
V c .exp[vT-r exp(2Vr)/2(or (0)+V (W0))

C u v2 21o)
.erf s

1-,5O k Or (0) ........ (4.47)

U

Notice that equation (4.47) is transcendental, it must be

solved numerically. With the parameters given in section

(4.4.1), we found that v = .25. Therefore, we shall use

v 0 (t) = .25 for 0 4 t . T as the starting nominal maxmin

•control for our algorithm.

The next step is to find all the local minima for

J(u,v . Two local minimizing u0 (1) and u0 (2) are found by

repeated applications of DDP routine for different values of

starting u(t). Table 10 summarizes the numerical results

for the maxmin iterations using v0 (t) = .25, Uo(1)(t) = -.25,

and u (t) = .25. The two starting values of u(t) lead to

two different minima. Extensive preliminary testing shows

that only these two local minima exist for this problem.
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The pertinent equations for the applications of DDP

routine are as follows:

Qu 2 Qv 2+ 2(uxi1-vx0)J x + ((ku-v)xi+ux2)Jxl

+ 2kx21x2. ..... ... .. (4.48)

u (t) = (2xJx 0+(kx1 +x 2)J *i+2kx2jx-2u0/(,W .... (4.49)

If u u(t)I > 2, then set the correspondinglu (t)j = 2 since

H is convex with respect to u. If u*(t) is not on the bound-

ary then equations (2.49) become

a(t) =Q 1 (u*.(t) -u 0 (t)) 2 .......... (4.50a)

J (t)= 2v0 (t) J (t) ...... (4.50b)
X0 xo

Jx (t)= -2u*(t)J xo(t) -(ku*(t)-vo(t))Jx (t) ...... (4.50c)

J X (t)= -U (t) [J xi(t) + 2k J 2(t)] ..... (4.50d)

2x/

ix(T) =-rcexp (-r4/2xo 0TMerf (r. /12x2 (T) W21Tx (T)3 1

J (T) = 0 ...... (4. 51c)

C T) =r 5 exp (-r /2x (T)) [-erf (rc/4 27 (T))]b 2  (T~
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The time T = 8 seconds is divided into 64 intervals and

equation (4.49) is used before each step of integrating

equations (4.50) backward, the value of u (t) for each step

is also stored in the memory to be used either as the mini-

mizing control or as the nominal control u (t) for the next

iteration. Equation (4.50a) is used in case u (t) is not on

the boundary. If u t) is on the boundary, however, the

following equation must be used

-a(t) = H (x,u , J ,t) -H(x,u 0 Jxt) ............ (4.52)

with the same terminal condition equation (4.51a).

It must be noted that the simple Euler integration

scheme used very effectively in the last chapter is not an

adequate integration scheme for both the state and the DDP

equations. More accurate integration scheme was needed, one

such scheme is the Runge-Kutta fourth order integration

method. The Runge-Kutta integration scheme was used both

in forward integration of the state equations (4.17) and
'p

the backward integration of DDP equations (4.50).

Refer to Table 10, for v (t) = 0.25 and u ) (t) = -0.25,
00

the cost is J( = .712. The convergence control weighting

factor W = 1. After integrating (4.50) back to t = 0, the

predicted cost change a(O) = -.013. Using the new control,

u (t) found in the process of backward integration, the new

cost was evaluated and the cost change A J -.194. This

process was repeated until a(O) is smaller than .001 .

1+W
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Figure 8a. Successive Approximations to the Maxin
Control

L 1~ 
._ _ .. -IIZ .-.- .

Figure 8b. Locally-Minimizing u(t) for each
Successive Approximation
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. .

After eight iterations? the DDP routine converged, the

latest nominal control is the local minimizing control,

u (t) plotted in Figure 8b.
N0

The second local minimizing control, Uo (2)t) also

shown in Figure 8b was found in a similar manner using
.. (2I

vo(t) = 0.25 and uo t) = -0.25 as starting nominal controls.

With these controls, j(2 ) = 878. Again using W = 1 the

predicted cost change was found to be -.0005 while the

actual cost change was -.018, the minimizing control in

this iteration was accepted as the new nominal control and

so on. DDP routine in this case converged in seventeen

iterations.

At the two local minimizing controls, the function -

space gradient of mincost with respect to the maximizing

control is found by the following equation:

g(t) = -2Q 2 v(t) - 2xO (t) Jx (t) - x1 (t)J . t ) . . . . . . .(4.53)

Th o m ((1) (i)() (2

The norm (g ( and the inner product (g (1) g(2)

was found by using
Mi J I T gi~t jtd
(g i) g)) = Jt) gJt)dt........... (4.54)

(1) (2)
Using the gradient: g1 (t) and g, (t), the norm:

( (1) (1) (2)

(gI (t) , g (t)), and the inner-product; (g1  (t),g 1  (t)),

the step length was calculated. The logic used to find the

step length for this problem is to alter the maximizing
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control vo(t) in such a way that appreciable increase of the

mincost i) is found and yet the minimizing control use in

the last iteration will not be too far off from the new one.

In addition, we do not want the new mincost j11) to be

greater than the new mincost J(2). Experimentation shows

that the step chosen to realize a predicted change in min-

cost of 20% worked very well in most cases. However, the

step size limited to a maximum value of one. The new

approximation to the maxmin control is then found by

vllt) = V(t) + step. g (t) ............... (4.54)

This is plotted in Figure 8a.

The first new local min for vl(t) was reached in three

iterations of the DDP routine, while the second one was

reached in one iterations. Examination of the mincosts

reveals that they are approaching one another. Thus we may

suspect that a crossover point may be found. After three

outer approximations to the maxmin control, the crossover

point was indeed found, the value of the controls at this

crossover point is shown in Table 11.

In figure 9, pertinent state information are presented

for the control combination v(t) and U (I)(t) or the maxmin

control combination number 1. The standard deviation for

the Target Miss is plotted as ]21); this curve shows

that the probability density function of the projected

Target Miss first expands because of the positive value of

4 *(i (t) up till the time t = 3.25 seconds, then the negative
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value of u( (t) causes the same process probability density

function to continually contract and end up with 42) =

0.3 kilofeet, a significant drop from the starting value of

1.5 kilofeet. The standard deviation for the projected

intercept miss is plotted as 4xl ) . This curve shows that

the probability density function of the projected intercept

miss first expands because U is using greater positive

control than V. However, around t = 3 seconds, V start to

apply greater positive control while U control becomes

negative, the probability density function contracts

rapidly, the players are moving towards one another. The

curve goes through a minimum and start rising again, this

in effect tells us that V has overshot the inside maneuver-

ing attacking missle after t = 7 seconds.

Figure 10 presents the maxmin effective lateral veloci-

ties for each player computed from the following equations:

cu2 (t) = u 2 (t) x2 (t) ........... (4.55a)u

2 2
c (t) = v (t) x (t) ........... (4.55b)v 0

These curves show that both quantities are well within

the lateral velocities limit of 1.5 kilofeet/second for U

and .75 kilofeet/second for V. The important point here

is that U is much bolder for the maxmin game than V since

in this situation, it is V who must play his "security

level" control and guard against any possibility that U
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might come up with.

Figure 11 and 12 presents the same information as

Figure 9 and 10 respectively, only this time with the con-

trol combination of v(t) and u (t). The negative feed-

back causes both standard deviations to drop initially

until t = 6.6 seconds. After which time .,jx 2 ) increases

becauses of positive value of ;(2)(t) and 4x(2) is level
0

off a little because now U is trying to "get away" from V

rather than just "bearing down" on the target. From Figure

12 V is again much more conservative on the lateral velo-

city than U.

Figure 13 shows sample trajectories with control

tcombinations u (t) for Figure 13a, and u(t),u (t)

for Figure 13b. These trajectories are generated by equa-

tions (4.8) using au (0) and Ov (0) as the initial values

for the random variables xu and xv respectively. Clearly,

the control combination v(t), u (t) represent the case

where U initially maneuvering away from the target to

draw V out, then using his superior control capability to

maneuver inside. Whereas the control combination (t) and

•j(2)(t) represent the case where U first tries to bear down

on the target and then uses his superior capability to

*maneuver outside to get away from V at the line of inter-

cept.

4.4.3 Minmax Solution

As before, we need a nonimal u (t) to start the
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algorithm for the minmax solution. Again we shall derive

this nominal control by assuming vo(t) = 0 for 0t 4t T.

"" With U using this control u (t), V would be forced to do
0

-"' "something" to try maximize the cost functional.

Proceeding in the same manner as in the maxmin case,

it is found that with vo(t) = 0, uo(t) = constant. With

this fact in mind the state and costate equations can be

solved as before and substitue in

-Uo= [2X1 (t) 1t+kxl(t) >l(t)+x2 (t) 1 (t) +2kx2 (t)X2 t)]

/2Q 1  (4.56)

The resulting transcendental equation, even though more

complicated, possesses the same structure as equation (4.47).

Numerically solving this transcendental equation, uo=-0.125

is used as the starting nominal control for the minmax

algorithm.

The next step is to find all the local maxima of

J(uo,v) using the DDP routine whose pertinent equations

are as follows:

v (t) = (2Wvo-2xoJ -x lJ )/2(Q2+W) ............... (4.57)
*- 2

a(t) = Q 2 ( v) .............. 4.58a)

J (t) = 2vJxo . . . . .... (4 .5 8b )x0

ut) J -1 .u.-v . ...... (4.58c)

Jx2t) -u (Jxl+2kJx) .............. (4.58d)
2 2
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Equation (4.57) is used for ly 141l. If 1v I > 1 then set

Iv*I = 1 while preserving the same sign and use equation

(4.52) instead of equation (4.58a). Incidentally, the

terminal conditions on equations (4.58) are the same as

equations (4.51). Successful backward integration of

* equations (4.58) while solving for v in (4.57) depends

* upon the proper value of the weighting factor W for the

convergence control. For the problem at hand DDP routine

converges to one maximum value from a wide selections of

starting nominal control v (t). Intuitively, once U's

control is specified, then his trajectory is predictable

from equation (4.8a). Knowing U's trajectory then V can

aim at the position on the interception line and just

minimizes the intercept miss which in turn maximizes the

probability of survival of the target. It is reasonable to

expect a unique optimal control for V to achieve this

objective.

Table 12 summarizes the numerical results for the

minmax iterations. For uo, = -0.125 and vo 0.125, the

cost J = .758, the predicted cost change is .003 while the

actual cost change is 0.145. The new cost J is .903 and

v is accepted as vo for the next iteration and so on. For

the current uo, DDP routine converges in seven iterations.

The maxcost gradient designated as go is then computed

for the control combination uo, v0 . The norm of this max-

cost gradient is computed from

' 136



Table 12. Minmax Iteration

MIN MAX J W a(0) AJ

uo  vo  .758 1.00 2.98E-3 0.145
.903 0.90 3.30E-3 5.OOE-2
.953 0.81 4.40E-4 3.00E-2
.956 0.73 1.50E-4 1.OOE-4
.956 0.66 3.10E-4 2.90E-3
.959 0.59 7.OOE-5 8.OOE-5
..959 0.53 1.80E-4 1.00E-3

Vo  .960

,-4

(go,go) = 0.0119, STEP = 1.00

uI  vI  .822 1.00 2.67E-3 5.40E-2
.936 0.90 2.OOE-A 2.OOE-3

, .938 1.46 7.OOE-5 1.OOE-3
v 1  .9391

(g1,g11  = 0.1019, STEP = 1.00

v .761 1.00 9.OOE-5 1.60E-32.762 0.90 8.0E-5 1.95E-3
.764 0.81 8.00E-5 1.95E-3

.765 0.729 7.OOE-5 1.00E-3
, .766 0.656 6.OOE-5 1.OOE-3

v 2  .766"2.

(g2,g2) = .0075, MINMAX SOLUTION
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SfT g2

The step length is computed using the same logic as in the

maxmin case. The new nominal control combination is

ul(t) = uo(t) - step.g(t) .......... (4.60a)

vl(t) = Vo(t) ........ (4.60b)

*The process is then repeated. After two approximations for

outer minimization, the norm of the maxcost gradient is

negligibly small and the minmax solution is found with

ut) = u2 (t) ......... (4.61)

The value of u(t) is shown in table 13 for sixty-four incre-

mented time scale. The successively improved approximations

to the minmax control are plotted in Figure 14a, while the

corresponding maximizing controls are plotted in Figure 14b.

Figure 15 presents pertinent state information by

showing standard deviation for projected intercept and tar-

get miss. The probability density function for the target

miss initially drops sharply as shown by .o caused by the

fact that the players (using minmax control combination) are

moving towards one another in this time interval. The

positive control u(t) for 4.4 rt <8 not only slow down the

rate of decrease of the intercept miss but also increase

the target miss as U is moving away from the LOS.

Figure 16 shows the reversal of roles between U and V.
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3! -0.005ez 0.1 C736

3s C0002!; 0919t53
3c0005t9 0.1;616

37 C00113'S 0.195-01

C*02C53 0.19t24
& C C002!22 0*1;503
41 C.o3CoC 0.194r:7
1.2 0.034135 0.19476
42 C.C397e 0.19473
44 C90447% 0,19476
45 C.*.~se6 0.1'9488
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52 C.0870' 0.I167

530009254 0.19S76
54 COOSE07 0.20102
55 C.10352- 0.20246
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Table 13. Computer Printout of Minmax Solution
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In the maxmin solution U was clearly the more agressive

player, while in this case for the minmax solution U has

to protect himself against all possibilities and becomes

much more conservative than V.

This fact is also confirmed in Figure 17 which is a

sample trajectory for minmax solution. U stayed pretty

close to his initial lateral position while V is consider-

ably bolder in going out to meet the attacking missle. For

the minmax case, the players pass the intercept line with

greater lateral distance away from the target than in the

maxmin case.

4.4.4 Net Solution

The net solution of the game consists of the minmax
A

control u(t) for the attacking missle player U and the

maxmin control (t) for the intercepting missle player V.

Using these strategies neither player needs to assume any

prior knowledge on what the other player might do. The

inequalities (2.7) also assures that both players will bene-

benefit by using these "secure strategies".

The net cost of the game J(u v) is 0.756, an improve-

ment for U for the minmax cost of 0.766, and an even more

improvement for V for the maxmin cost of 0.659.

4 Figure 18 shows a sample trajectory using the control

Acombination u(t) and !(t) generated by equations (4.8) using

standard deviations Ou(0) and 0v(0) for the initial values

Xu(0) and x v(0) respectively.

142



0

* 0

I . I. I

F I -A

I 4-. -

. 914



44

4

It-

:1E-1

_ I I--4

I I I

I l l m 1 ' .
* Go

* .. I H

* *, I'144

- - ~70



4.5 Discussion of the Problem

K. This problem has raised several significant points

about general nature of differential games and the relative

* merit of the methods required to solve them. These points

will be discussed in this section. First the results of

this problem confirm that a saddle point is not required to

exist in a general two-person zero-sum differential game.

In this case, the maxmin solution is a crossover point. It

must be emphasized, however, that a crossover point can be

used as a solution only in the case where the values ofL-

the local optimal points in the inner optimization are

moving towards one another after the improved successive

approximations of the outer optimization process. Only a

very limited class of differential game can be shown to

possess a saddle point. One such problem is a linear

dynamics, quadratic cost, two-person, zero sum determinis-

tic differential game.

The seemingly simple problem described in this chapter

with several simplified assumptions has turned out to be a

complicated problem with nonlinear dynamics and nonquadra-

tic cost. Even the initial guess of the initial nominal

control solving as an optimal control problem cannot be

* treated analytically. The only way out was to use an

efficient algorithm to solve the problem numerically. The

use of a computer is inevitable
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The defensive aspect of using the minmax and the max-

min solutions or the so called "security level" solutions

must be mentioned. With these strategies, each player can

". rest assure that his opponent can induce no more harm to

him than what he expects. He can only gain if the opponent

decides to switch to some other strategy. One traditional

* way to solve an intercept problem was to derive a likely

strategy for the attacking missle. Many authors have used

colored-noise process to describe the behavior of the

attacking missle and solved for the interception strategy

as an optimal control problem. It is unreasonable, however,

to expect'that the attacking missle will oblige in the

actual case and behave like a colored-noise process espec-

ially if he knows that the interception strategy has been

derived in such manner. Some authors suggested "mixed

strategy" as the solution of a differential game where a

saddle-point does not exist. However, the "mixed strategy"

solution is very hard to compute even for a very very sim-

ple unrealistic problem. Implementation of such strategy

in an actual combat encounter does seem to be too far

fetched.

Sufficient statistics are used as states variables for

this problem to obtain meaningful results. This method

greatly reduced the complexity of stochastic differential

game. However, the number of state variables are greater

than the deterministic cases. The current pursuit-evasion
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problem requires two physical state variables, the actual

sufficient statistics is five: two mean value functions

and three independent covariance matrix elements. If the

physical controls are accelerations rather than velocities,

four physical states variables would be required leading to

fourteen elements in the set of sufficient statistics, and

so on. To keep the problem tractable and retain physical

insight, the problem should be simplified as much as real-

istically possible.

One reason that causes differential games to be much

more complicated than simply being an extension of optimal

control problems is the existence of conjugate points.

The main reason conjugate points appear in differential

games as a rule rather than an exception is that one must

simultaneously maximizing and minimizing the same cost

function. The first order algorithm developed for this

report at first does not converge on a wide varieties of

starting initial conditions even with the use of the "step

-size" convergence control discussed in Chapter 2 which

was used successfully in McFarland algorithm. Jarmark's

* scheme for convergence control is then used with excellent

results. Singular control becomes non-singular with the

proper convergence control weight described in section 4.3.

The formulation of the stochastic nonlinear pursuit-

evasion problem in this chapter turns out to be the same

model that McFarland used in his report. However,
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different rationalization was made in the formulation pro-

cess. It is believed that the rationalization used here

is more realistic as explained in section 4.2. Since the

same model was arrived at except for the addition of the

control constraints here, comparison of the computation

results could be made. Since McFarland used second order

algorithm for inner optimization and also computed a new

estimate for the inner optimal control for each successive

outer approximation, the amount of computations required

for each iteration of McFarland's DDP is about four times

the amount of computations required for each iteration

used in this report. on this basis, the amount of comput-

ations required to reach the maxmin solution in this report

is about one-half the amount required by McFarland's

algorithm. The minmax computation requirement is even

more impressive, only 6.35 seconds is required for the

computer execution time while less than one-sixth the

amount of computation is required when compared to

McFarland's method to reach the same solution. Therefore,

the algorithm presented in this report is more suitable

to the real time application of pursuit and evasion

1: differential game.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This research deals mainly with the most natural

applications of differential games: namely the pursuit-

evasion problems. Except for a very few simple unrealistic

problems of this type, analytical solutions are virtually

impossible to obtain. Fast and efficient algorithm is

needed before the solutions of realistic pursuit-evasion

problems can be solved and implemented in the actual physi-

cal conditions.

A numerical first order method without a saddle point

assumption and capable of handling the control and state

constraints is developed in this report. The algorithm is

used to solve for the minmax and the maxmin solutions

independently to be used by each player.

Linear Quadratic differential game without any cons-

traint. can be solved analytically even without a saddle

point assumption. The analytical solutions are offered in

this case. The case with limiting control constraint

cannot be solved analytically. The numerical methods with

and without the saddle point assumption give the answer

for this case with negligible difference in computation

time.
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A nonlinear stochastic pursuit-evasion problem is

developed and treated as a deterministic problem via a set

of sufficient statistics. This problem does not converge

with the algorithm developed in this report without an

efficient convergence control method. The step-size

convergence control is not adequate for this problem.

Jarmark's convergence control method solves this problem

when used in conjunction with the first-order algorithm

developed here. Together,'the algorithm provide a fast

computation time for the problem. The results of this

problem also strenghten the claim that saddle point does

not exist in a general differential game contrary to the

assumption used by many authors.

On the computation details, we found that the simple

Euler integration scheme is sufficiedt when used in a

simple linear-quadratic problem presented in Chapter 3.

In the nonlinear stochastic case of Chapter 4, however,

more accurate integration scheme is needed. The fourth-

* order Runge-Kutta integration scheme is used in this

latter case with excellent results.

5.2 Recommendations for Future Research

The first fasinating area that could be further ex-

plored in this field is the improvement of convergence

control method. Jarmark's convergence control technique

may be applied to the second order algorithm developed

by McFarland and compared with the "step-size" convergence
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control of Jacobson and Mayne. So far Jarmark has provided

only the existence Theorems of the convergence control

weighting matrix W. There is no hard and fast rule on how

to find the most efficient W. This author feels that the

convergence index domain used in this report has been

* started off in the right direction. There could be room

for improvement in this area.

Another unexplored area is to let W be time variant.

This would probably be suitable for the algorithm developed

in this report. In the backward integration of the DDP

equations, it does seem that the optimal control generated

near the final time T should be more accurate than that

generated further out near the starting time 0. Therefore,

we could for example let W be a linear function of time

with appropriate slope and initial value to be found by

some suitable logic.

Time delay is another intriging area that must be

faced in the real world. Presently, a few authors has

dealt with this subject. All of them quickly specialize

into simple problem. It would be interesting and benefi-

* cial to see how the information time delay would effect

the optimal strategies of the problem presented in this

report.
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